
The story of CVE-2011-2018 exploitation

Mateusz “j00ru” Jurczyk

February - April 2012

Abstract

Exploitation of Windows kernel vulnerabilities is recently drawing
more and more attention, as observed in both monthly Microsoft advi-
sories and technical talks presented on public security events. One of the
most recent security flaws fixed in the Windows kernel was CVE-2011-
20181, a vulnerability which could potentially allow a local attacker to
execute arbitrary code with system privileges. The problem affected all
- and only - 32-bit editions of the Windows NT-family line, up to Win-
dows 8 Developer Preview2. In this article, I present how certain novel
exploitation techniques can be used on different Windows platforms to
reach an elevation of privileges through this specific kernel vulnerability.

1 General information

Although the original name assigned by Microsoft might imply that the vul-
nerability was directly related to exception handling and the vulnerability FAQ
refers to some kind of objects, I consider the information to be rather mislead-
ing, as the bug doesn’t have anything to do with Windows Object Manager or
any other type of objects in the common meaning. Alike, exception handling
is only one of the affected mechanisms, while the bug resides in a completely
different part of the kernel – a generic dispatcher of transitions between user-
and kernel-mode.

Due to the nature of the vulnerability, which is strictly related to cus-
tom Local Descriptor Table entries only possible to be created locally (through
the NtSetLdtEntries or NtSetInformationThread system services), I believe the
scope of the bug is limited to local attacks. Considering that the X86-64 archi-
tecture almost entirely abandons the usage of segments, 64-bit Windows editions
are not affected by the bug by definition.

As a matter of fact, the issue was found accidentally during the development
of a CrackMe program with Gynvael Coldwind. The project was an entry to the
Pimp My CrackMe competition [2], and in itself was meant to become a Proof

1The vulnerability was officially titled “Windows Kernel Exception Handler Vulnerability”
in the Microsoft Security Bulletin.

2Windows 8 Developer Preview was released on September 13th, 2011, roughly three
months before the official patch release date.

1



of Concept presenting how IA-32 segmentation could be used for the purpose
of execution flow obfuscation. Interestingly, the application began to crash
my Windows Vista machine at early stages of the project development. After
the contest finished, I started to investigate the crash dumps and soon found
out that the manifested kernel bug was exploitable on all modern NT-family
operating systems. This paper attempts to document the efforts I originally
made to create a reliable exploit for the Windows XP and Windows Vista / 7
platforms.

2 Initial crash

The concept presented in the Pimp CrackMe challenge relied on creating nu-
merous ring-3 code segments in a per-process LDT structure. According to ex-
perimental tests performed with the most commonly used debugging software,
making extensive use of IA-32 segmentation might cause substantial difficulty
during run-time analysis of the target program’s execution flow [6]. I believe
this phenomenon is primarily motivated by the fact that even though custom
segments are still present and supported by CPU vendors, they are almost never
observed in common software3, as the popular flat memory model meets most
requirements of a modern execution environment. Detailed information on cre-
ating custom LDT entries on Windows has been publicly available since early
years of the last decade [11].

Our CrackMe implemented a simplistic virtual machine supporting around
10 instructions with a trivial CPU context and encoding scheme. Every in-
struction handler had its own code segment assigned to it, so that each of them
could be invoked through a far call instruction. Given n virtual instructions, I
intuitively decided to use the {0, · · · , n − 1} range of LDT indexes. Once the
segment-switching code worked correctly, I began to randomly encounter Blue
Screens of Death while running the program for testing purposes. Listing 1
presents an excerpt from the crash log generated upon the occurrence of an
unexpected bugcheck.

Listing 1: Initial system crash

TRAP_FRAME: f572acf0 -- (.trap 0xfffffffff572acf0)
ErrCode = 00000002
eax=c0000005 ebx=fffffff4 ecx=00010101 edx=ffffffff esi=00000202 edi=f572ad20
eip=8053d861 esp=f572ad64 ebp=f572ad64 iopl=0 nv up di ng nz ac po cy
cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010093
nt!KiSystemCallExit2+0x84:
8053d861 897308 mov dword ptr [ebx+8],esi ds:0023:fffffffc=????????
Resetting default scope

LAST_CONTROL_TRANSFER: from 804f7bad to 80527c0c

STACK_TEXT:

3There are several exceptions to the rule, such as the Google Chrome NaCl project, which
uses segmentation to facilitate its security model on 32-bit platforms.

2



f572a82c 804f7bad 00000003 fffffffc 00000000 nt!RtlpBreakWithStatusInstruction
f572a878 804f879a 00000003 00000000 c07ffff8 nt!KiBugCheckDebugBreak+0x19
f572ac58 804f8cc5 00000050 fffffffc 00000001 nt!KeBugCheck2+0x574
f572ac78 8051cc7f 00000050 fffffffc 00000001 nt!KeBugCheckEx+0x1b
f572acd8 805405d4 00000001 fffffffc 00000000 nt!MmAccessFault+0x8e7
f572acd8 8053d861 00000001 fffffffc 00000000 nt!KiTrap0E+0xcc
f572ad64 00000005 badb0d00 00000101 00000000 nt!KiSystemCallExit2+0x84
WARNING: Frame IP not in any known module. Following frames may be wrong.
0022fef4 00000000 0000001b 77c50000 ffffffff 0x5

3 Vulnerability analysis

Windows trap frame is an internal structure responsible for the storage of
various parts of the execution context such as general-purpose, debug and
segment registers, flags or other information regarding the CPU state previ-
ous to an interrupt, exception or privilege switch. Although the structure is
opaque and not officially documented, it is possible to obtain its definition with
WinDbg and debug symbols available through Microsoft symbol server (http:
//msdl.microsoft.com/download/symbols). The structure used on a
32-bit version of Windows XP, Vista and 7 is presented in Listing 2.

Listing 2: KTRAP FRAME structure definition

kd> dt _KTRAP_FRAME
nt!_KTRAP_FRAME
+0x000 DbgEbp : Uint4B \
+0x004 DbgEip : Uint4B |
+0x008 DbgArgMark : Uint4B |
+0x00c DbgArgPointer : Uint4B |
+0x010 TempSegCs : Uint4B |
+0x014 TempEsp : Uint4B |
+0x018 Dr0 : Uint4B |
+0x01c Dr1 : Uint4B |
+0x020 Dr2 : Uint4B |
+0x024 Dr3 : Uint4B |
+0x028 Dr6 : Uint4B |
+0x02c Dr7 : Uint4B |
+0x030 SegGs : Uint4B |
+0x034 SegEs : Uint4B | Initialized by Windows
+0x038 SegDs : Uint4B |
+0x03c Edx : Uint4B |
+0x040 Ecx : Uint4B |
+0x044 Eax : Uint4B |
+0x048 PreviousPreviousMode : Uint4B
+0x04c ExceptionList : Ptr32 _EXCEPTION_REGISTRATION_RECORD
+0x050 SegFs : Uint4B |
+0x054 Edi : Uint4B |
+0x058 Esi : Uint4B |
+0x05c Ebx : Uint4B |
+0x060 Ebp : Uint4B /
+0x064 ErrCode : Uint4B > Initialized by CPU or Windows
+0x068 Eip : Uint4B \
+0x06c SegCs : Uint4B |

3

http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols


+0x070 EFlags : Uint4B | Initialized by CPU
+0x074 HardwareEsp : Uint4B |
+0x078 HardwareSegSs : Uint4B /
+0x07c V86Es : Uint4B \
+0x080 V86Ds : Uint4B | Optionally initialized by CPU
+0x084 V86Fs : Uint4B |
+0x088 V86Gs : Uint4B /

The structure is formed on the kernel stack once an exception or interrupt
is generated or delivered to the processor. After one of these conditions takes
place, the CPU saves the most sensitive pieces of the execution context on
the stack. The number of words pushed on the stack may differ, depending on
whether a privilege switch was involved in the event (see Figures 1 and 2). More
details on how IA-32 processors handle interrupts and exceptions can be found
in ”Intel 64 and IA-32 Architectures Software Developer’s Manual”, Volume 3A,
section ”Exception- or Interrupt-Handler Procedures” [4].

Figure 1: Stack Usage with no Privilege-Level Change

The upper part of the trap frame is filled by Windows, by manually push-
ing the registers and other context characteristics on the stack. The structure
resides in memory thorough the execution of an interrupt handler, and is af-
terwards used to restore the original context of the interrupted task, so that
the breakout from regular code execution is fully transparent to the underlying
software.

4



Figure 2: Stack Usage with a Privilege-Level Change

By just looking at the KTRAP FRAME structure definition, one can deduce
it can be used to store more information than just rough values of the proces-
sor registers. Specifically, the fields starting with ”Dbg” and ”Temp” prefixes
(DbgEbp, DbgArgMark, TempSegCs, TempEsp) seem to be most interesting. As
it turns out, the SegCs field not only serves as a container to back up the cs:
selector, but is also occasionally used as a marker, indicating that the inter-
rupt exit routine should use the TempSegCs / TempEsp pair instead of SegCs /
HardwareEsp when returning to the previous task. Exemplary snippets of the
Windows kernel code4 making use of this specific SegCs property are shown in
Listings 3 and 4.

Listing 3: Setting SegCs marker

VOID
KiEspToTrapFrame(

IN PKTRAP_FRAME TrapFrame,
IN ULONG Esp
)

(...)

//
// Edit frame, setting edit marker as needed.
//

4The presented code listings are part of the Windows Research Kernel project.

5



if ((TrapFrame->SegCs & FRAME_EDITED) == 0) {

// Kernel frame that has already been edited,
// store value in TempEsp.

TrapFrame->TempEsp = Esp;

} else {

// Kernel frame for which Esp is being edited first time.
// Save real SegCs, set marked in SegCs, save Esp value.

if (OldEsp != Esp) {

TrapFrame->TempSegCs = TrapFrame->SegCs;
TrapFrame->SegCs = TrapFrame->SegCs & ˜FRAME_EDITED;
TrapFrame->TempEsp = Esp;

}
}

Listing 4: Examining SegCs against a marker while returning from interrupt

test word ptr [esp]+TsSegCs,FRAME_EDITED
jz b ; Edited frame pop out.

(...)

Considering that the numeric value of the FRAME EDITED constant is defined
as 0xFFF8, we get a clear picture of what is going on here. The kernel assumes
that it is normally impossible to have SegCs inside a trap frame set to a value
with the highest 13 bits cleared, and consequently uses such state to indicate
the presence of some special condition. The structure of a segment selector on
X86 platforms is presented in Figure 3.

Figure 3: Intel X86 segment selector format

The Intel X86 manuals state that the first GDT entry (index=0) is archi-
tecturally reserved, as all segment selectors pointing at GDT[0] (i.e. with the
high 14 bits cleared) are treated as special NUL selectors regardless of the first
Global Descriptor Table entry contents. However, there is no corresponding rule
in regards to Local Descriptor Table, hence making it feasible to set up a valid
segment at LDT[0] and use it to execute code (i.e. with cs: set to a numeric
value of 0007h).

As a consequence, it is possible to trick the kernel into thinking that SegCs
value has a special, reserved meaning while it really is just a valid code selector.

6



Such effect can be achieved by creating an LDT entry with index=0, switching
cs: and triggering a software interrupt (or waiting for a hardware one to occur).
As shown in Listing 5, the kernel would then use TempEsp as a new stack pointer
and execute an IRETD instruction with the TempSegCs value as its parameter.
As we consider the fact that none of the fields are initialized prior to being
mistakenly used, it becomes apparent that we have just faced a stack-based
uninitialized variable reference vulnerability.

Listing 5: Using TempSegCs and TempEsp to set up a return frame

jz b ; Edited frame pop out.

(...)

b: mov ebx,[esp]+TsTempSegCs
mov [esp]+TsSegCs,ebx

(...)

mov ebx,[esp]+TsTempEsp
sub ebx,12
mov [esp]+TsErrCode,ebx

;
; Copy eip,cs,eflags to new stack. note we do this high to low
;

mov esi,[esp]+TsEflags
mov [ebx+8],esi
mov esi,[esp]+TsSegCs
mov [ebx+4],esi
mov esi,[esp]+TsEip
mov [ebx],esi

In almost all practical scenarios, neither TempSegCs nor TempEsp are ever
filled with any data at all; the structure fields usually remain zero-ed out during
the lifespan of a given process. This explains the appearance of the initial crash,
including the attempt to write to the 0xfffffffc address (calculated as TempEsp
- 4). In the current state, the flaw could only be used to trigger a Blue Screen
of Death and crash the machine. Successful elevation-of-privileges exploitation
relies on one’s ability to control the values of TempSegCs and TempEsp; if it
were possible, turning the security flaw into an Administrators command prompt
would be a matter of writing the desired payload.

During the course of several weeks after encountering the first crash, I have
developed methods to successfully exploit the issue on Windows XP SP3, and
later on Windows Vista and 7; the latter part turned out to be considerably
harder. Let’s proceed to the juicy part.

7



4 Exploitation - initial notes

Given that the only possible way to exploit the flaw is to fill the two crucial
fields in KTRAP FRAME with non-zero (possibly controlled) values, I initially
focused on looking for ways to achieve this goal. One of the most important
characteristics of a trap frame is that it is almost always allocated at exactly
the same place on the kernel stack. The underlying reason for this behavior is
the management algorithm of the stack - when in user-mode, the kernel stack
pointer is set to the top of the stack (or somewhere close to the top). Since the
trap frame is the first structure allocated on the stack upon an interrupt, it is
always mapped to the very same virtual address for a specific thread.

The main advantage of the above property is the fact that once filled, the
values of uninitialized structure fields reside there for a really long time. On
the other hand, this also means that it is not possible to write to the memory
area assigned to the targeted fields in any way other than through an explicit
reference to KTRAP FRAME.

Personally, I was able to think of two potential approaches to the problem
of controlling TempSegCs and TempEsp:

• Get the kernel to fill the fields legitimately (triggering the SegCs-marking
kernel mechanism), and then re-use those values in a malicious way.

• Spray a region of the kernel stack below the trap frame with controlled
data, and have the trap frame mapped to that lower area of the stack, so
that TempSegCs and TempEsp are allocated in memory previously filled
with arbitrary bytes.

As later turned out, the first idea was not applicable in real-life conditions,
as the SegCs-marking mechanism could only be used on a trap frame describ-
ing kernel-mode code interruption, whereas our exploit would be only able to
produce user-mode frames. On the other hand, the second concept proved to
work on all modern Windows versions (although the technical details of how
to accomplish it were different between them). Let’s see how the task can be
accomplished on a Windows XP / 2003 platform.

5 Windows XP exploitation

As mentioned in previous sections, the assembly presented in Listing 7 is ex-
ecuted after making a wrong assumption that the saved cs: selector has a a
special meaning reserved only for kernel mode use-cases. The following trap
frame fields are involved in the operation:

• TsTempEsp: Unitialized value,

• TsErrCode: Irrelevant, used to back up TsTempEsp,

• TsEflags: The original EFlags of the interrupted code,

8



• TsSegCs: Unitialized value,

• TsEip: The original Eip of the interrupted code.

As a result, having the two undefined fields initialized with valid values,
the faulty KiSystemCallExit2 (also known as Kei386EoiHelper) routine
should be able to seamlessly return to the interrupted code, the only difference
being a potentially modified cs: selector and Esp register.

During regular ring-3 thread execution, the kernel stack pointer points to a
specific address, usually very close to the stack base. When a trap-frame is built,
the original stack pointer is decremented by an adequate number of bytes5. The
most common kernel stack layout observed during an interrupt or system call
invocation is presented in Figure 4.

Figure 4: Typical kernel-mode stack layout

The ultimate objective is to move the kernel stack base pointer towards the
bottom of the stack, so that the structure is remapped into better controlled
memory areas. Let’s find out about possible ways to do it.

5Usually 124 (7Ch) bytes, being a typical KTRAP FRAME structure size.

9



5.1 Trap frame allocation

Shifting the kernel stack base address is definitely not something people do pur-
posely on a daily basis. On the other hand, it turns out that the operation is
an essential part of the GUI-process management in kernel mode. Specifically,
the Windows kernel provides an undocumented functionality making it possi-
ble for win32k.sys and potentially other device drivers to ”call-back” into
user-mode. The exported kernel function implementing the feature is called
KeUserModeCallback, and has been thoroughly examined and described by
a Norwegian security researcher Tarjei Mandt, who showed that incorrect usage
of the mechanism did lead to over 40 Privilege Escalation vulnerabilities in all
Windows NT-family systems [9].

Every time a user-mode callback is invoked (which happens fairly frequently
for every GUI thread), the kernel saves current context information (i.e. the
kernel-mode return address) on the current stack and performs a return to the
less-privileged execution mode. Since the callback return context consumes
some memory at the top of the stack, respective interrupts invoked from within
a nested user-mode callback result in having the new trap frame allocated in
the lower portions of the stack (see Figure 5).

According to my personal experiments, the delta between the original and a
post-callback stack base is around 2608 (0A30h) bytes6. As the callbacks can be
used in a recursive fashion, it is possible to decrease the stack base by any mul-
tiplicity of that number by triggering an adequate number of nested callbacks.
The mechanism itself works by returning to a constant ntdll!KiUserMode-
CallbackDispatcher function, which invokes the proper handler within
user32.dll, based on a parameter passed through the user-mode stack (see List-
ing 6).

Listing 6: KiUserCallbackDispatcher assembly snippet

.text:7C90E440 ; __stdcall KiUserCallbackDispatcher(x, x, x)

.text:7C90E440 public _KiUserCallbackDispatcher@12

.text:7C90E440 _KiUserCallbackDispatcher@12 proc near

.text:7C90E440 add esp, 4

.text:7C90E443 pop edx

.text:7C90E444 mov eax, large fs:18h

.text:7C90E44A mov eax, [eax+30h]

.text:7C90E44D mov eax, [eax+2Ch]

.text:7C90E450 call dword ptr [eax+edx*4]

.text:7C90E453 xor ecx, ecx

.text:7C90E455 xor edx, edx

.text:7C90E457 int 2Bh

.text:7C90E459 int 3

.text:7C90E45A mov edi, edi

The routine obtains a list of the callback handlers from [[fs:18]+30h]+2Ch7,

6The number includes initial trap frame, a local kernel-mode context and the user-mode
callback return frame.

7The fs: segment register typically points to the Thread Environment Block structure,
while fs:[18h] is supposed to store the address of the local Process Environment Block. The

10



Figure 5: Kernel stack layout after invoking a nested interrupt

and invokes a corresponding routine. After the handler returns, the dispatcher
uses interrupt 2Bh to resume kernel-mode execution. It is possible to hijack the
user32.dll dispatch table and intercept the execution when a user-mode callback
is triggered from ring-0 by replacing the default dispatch table pointer with a list
of attacker-controlled functions. As a result of being able to execute arbitrary
code in the context of a user-mode callback, we can easily craft trap frames at
lower portions of the kernel stack.

Being able to move the trap frame around, the last remaining problem
is how the kernel stack can be filled with controlled data, prior to mapping
KTRAP FRAME to that memory and having the kernel use the custom values
as TempSegCs and TempEsp. An ideal solution would be to get a system ser-
vice to copy some controlled bytes into a large enough local buffer stored on
the stack. Since the delta between typical and callback-adjusted stack bases is

overall expression translates to PEB.KernelCallbackTable.

11



around 0A00h, it would be safe to control as much as 1000h (4kB, roughly one
memory page) bytes of the stack.

As it turns out, the desired effect can be successfully achieved by taking ad-
vantage of the nt!NtMapUserPhysicalPages system service. The routine’s
internal stack frame is 1100h bytes large, primarily influenced by a local array
of 400h items of type ULONG. The function prologue is presented in Listing 7.

Listing 7: nt!NtMapUserPhysicalPages syscall prologue

...

#define COPY_STACK_SIZE 1024

...

NTSTATUS
NtMapUserPhysicalPages (

__in PVOID VirtualAddress,
__in ULONG_PTR NumberOfPages,
__in_ecount_opt(NumberOfPages) PULONG_PTR UserPfnArray
)

...

ULONG_PTR StackArray[COPY_STACK_SIZE];

...

PoolArea = (PVOID)&StackArray[0];

...

if (NumberOfPages > COPY_STACK_SIZE) {
PoolArea = ExAllocatePoolWithTag (NonPagedPool,

NumberOfBytes,
’wRmM’);

if (PoolArea == NULL) {
return STATUS_INSUFFICIENT_RESOURCES;

}
}

//
// Capture the specified page frame numbers.
//

Status = MiCaptureUlongPtrArray (PoolArea,
UserPfnArray,
NumberOfPages);

...

As the listing shows, the service is capable of copying up to 4096 user-
controlled bytes into a local buffer. When called with specially crafted parame-
ters, this behavior allows an attacker to entirely cover a KTRAP FRAME structure

12



(which can be later allocated within the boundaries of the local buffer) and con-
sequently control all uninitialized fields therein. For a more detailed description
of the spraying technique, see ”nt!NtMapUserPhysicalPages and Kernel Stack-
Spraying Techniques” [5].

Figure 6: Stack spraying illustrated

To sum up, the following steps need to be performed in order to complete
the first exploitation stage:

1. Load user32.dll

2. Hook the user32.dll callback table using a PEB array pointer

3. Call nt!NtMapUserPhysicalPages to spray 4kB of kernel stack with
arbitrary data

4. Trigger a user-mode callback (e.g. through a MessageBox API call)

13



... from within intercepted callback handler:

6. Create a code segment at index=0 in Local Descriptor Table

7. Trigger the vulnerability through a jump into cs:=7

Interestingly, Step 6 can be alternatively achieved with three lines of as-
sembly shown in Listing 8. During the execution of such an expensive loop,
a hardware interrupt will likely occur in the context of the thread, having the
same effect as directly invoking a software interrupt.

Listing 8: Loop waiting for an elevated CPL

@@:
mov ax, cs
and ax, 3
jnz @@

After spraying the stack with a block of 41414141 values and performing the
rest of the outlined steps, one should be able to achieve the effect presented in
Listing 9.

Listing 9: A result of triggering CVE-2011-2018 with a sprayed stack

FAULTING_IP:
nt!KiSystemCallExit2+84
8053d861 897308 mov dword ptr [ebx+8],esi

TRAP_FRAME: f5deb2c0 -- (.trap 0xfffffffff5deb2c0)
ErrCode = 00000002
eax=c0000005 ebx=41414135 ecx=00010101 edx=f5deb634 esi=00000202 edi=f5deb2f0
eip=8053d861 esp=f5deb334 ebp=f5deb334 iopl=0 nv up di pl nz ac pe nc
cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010016
nt!KiSystemCallExit2+0x84:
8053d861 897308 mov dword ptr [ebx+8],esi ds:0023:4141413d=????????
Resetting default scope

5.2 What’s next?

Controlling the TempSegCs and TempEsp fields enables us to get the kernel to
create the following return frame at a chosen virtual memory address and invoke
an IRETD instruction:

+0x00 Eip from the original trap frame
+0x04 TempSegCs (controlled)
+0x08 EFlags from the original trap frame

In other words, the kernel will attempt to return to the previous execution
context, only difference being a fully controlled cs: selector. In order to perform
an elevation of privileges, we need to point it to a code segment with RPL=0
and DPL=0. The only available option is to use the default kernel-mode code

14



segment, initialized in GDT[1] and represented by cs:=0008h (index=1, ldt=0,
rpl=0).

Notably, the KiSystemCallExit2 routine executes with the Interrupt Re-
quest Level (IRQL) equal to DISPATCH LEVEL, thus pointing TempEsp to a
pageable memory region (for example, user-mode area) might and likely would
cause a IRQL NOT LESS OR EQUAL bugcheck. Consequently, it is required to
find a non-pageable and writable memory (e.g. NonPaged pool or part of a de-
vice driver’s image) within the kernel virtual address space, to use it for the fake
exit frame storage. Neither of those address types are hard to obtain, thanks to
numerous kernel communication channels revealing lots of information regard-
ing the ring-0 address space [7]. Due to my personal preferences, I chose to use
a non-pageable region of the ntoskrnl.exe executable image.

Furthermore, since the user-mode callback stack delta can be potentially
subject to future modifications, it would be most desirable to build an offset-
resilient exploit. As the only two fields initialized through stack spraying are
TempSegCs and TempEsp, setting them both to a valid kernel stack pointer
ending with 0008h prevents the exploit from failing upon different offsets. The
technique works only due to the IRETD instruction implementation - given a
xxxx0008 parameter as the target code selector, it will always ignore the upper
16 bits of the argument.

For testing purposes, I decided to use the exported nt!HalDispatchTable
symbol to calculate the final 32-bit spraying operand:

(&HalDispatchTable & 0FFFF0000h) + 0008h

After filling the kernel stack with the above DWORD value and having
the bug triggered, we should expect the kernel to return back to the previous
execution address, only difference being the newly acquired ring-0 privileges -
note the cs: register value in Listing 10.

Listing 10: Payload running with escalated ring-0 privileges

kd> r
eax=67500000 ebx=0120e4c4 ecx=675135a8 edx=00000001 esi=92f7bdb0 edi=67501b9b
eip=010e000e esp=badb0d00 ebp=0120e4d0 iopl=0 nv up ei pl zr na pe nc
cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00000246
010e000e cc int 3

kd> u
010e0000 bbc4e42001 mov ebx,120E4C4h
010e0005 668cc8 mov ax,cs
010e0008 66250300 and ax,3
010e000c 75f7 jne 010e0005
010e000e cc int 3
010e000f 0f20c2 mov edx,cr0
010e0012 81e2fffffeff and edx,0FFFEFFFFh
010e0018 0f22c2 mov cr0,edx

15



5.3 Writing a kernel-mode payload

Although the primary goal of escalating code execution privileges to ring-0 has
been accomplished, it is still required to fix the broken operating system state
and use the acquired rights to fully compromise the system in a clean fashion
(e.g. load a custom kernel device driver, or create a command shell with NT
AUTHORITY\SYSTEM privileges).

In order to reliably execute ring-0 payload, the exploit will take the following
steps after returning from the faulty KiSystemCallExit2:

1. Overwrite the nt!HalDispatchTable+4 function pointer with a user-
mode shellcode address,

2. Perform a regular kernel-to-user return using a minimal trap frame set up
on the kernel stack.

After that, we should end up with a stable operating system state and a redi-
rected kernel-mode pointer, which can be invoked via the NtQueryInterval-
Profile service at any convenient time [8]. A pseudo-code of an exemplary
stage-one assembly payload is shown in Listing 11.

Listing 11: Stage-one payload pseudo-code

While (SegCs & 3) != 0:
Nop;

Turn off memory protection through CR0;

[nt!HalDispatchTable + 4] = &Stage2Payload;

Push the following values on kernel-mode stack:
+0x00: 0x0023 (KGDT_R3_DATA, data segment selector)
+0x04: Address of user-mode stack
+0x08: 0x001B (KGDT_R3_CODE, code segment selector)
+0x0C: Address of user-mode routine

Restore memory protection through CR0;

Invoke IRETD;

Having an opportunity to execute a high-level function as stage-two payload,
we can implement the routine to make use of the documented kernel API inter-
face. The approach guarantees correct performance of the code on all modern
Windows editions, and doesnt put the attacker at risk of using obscure solutions
(such as relying on EPROCESS structure offsets). The pseudo-code of a payload
elevating the privileges of a chosen process can be found in Listing 12.

Listing 12: Exemplary stage-two payload pseudo-code

Open handle to a process with PID=4 (SYSTEM process) via ZwOpenProcess;

Open the process’ security token via ZwOpenProcessToken;

16



Duplicate the token via ZwDuplicateToken;

Assign the token to a chosen process (e.g. GetCurrentProcess()) via
ZwSetInformationProcess;

Addresses of the required kernel API functions referenced in the payload can
be easily obtained from within user-mode, by making use of the LoadLibrary
and GetProcAddress APIs, and pieces of information revealed by EnumDevice-
Drivers. More information regarding the implementation of a custom Get-
KernelProcAddress function can be found in the ”Windows Security Hard-
ening Through Kernel Address Protection” article [7].

When all of the discussed steps are successfully completed, one should be
able to see the result shown in Figure 7. That’s it for Windows XP.

Figure 7: Result of successful exploitation on the Windows XP platform.

6 Windows Vista / 7 exploitation

Beginning with Windows Vista and 2008, Microsoft introduced fundamental
changes in how user-mode callbacks work internally. In the previous system
editions, context information regarding all recursive callbacks was stored in the
scope of a single kernel stack, allowing user-mode applications to manipulate
the location of the trap frame. As previously discussed, the latter behavior was
the key to successful exploitation of the considered vulnerability.

Newer operating systems no longer use a single stack for multiple callbacks.
Instead, every time a user-mode callback is invoked, a completely new ker-
nel stack is spawned and the base stack pointer is moved to the top of the
new memory area. The overall functionality is implemented by an internal
KiMigrateToNewKernelStack routine, as shown in Listing 13.

17



Listing 13: New user-mode calback implementation

.text:00465738 ; __stdcall KiCallUserMode(x, x, x)

.text:00465738 _KiCallUserMode@12 proc near

.text:00465738

.text:00465738

.text:00465738 var_18 = byte ptr -18h

.text:00465738 arg_8 = dword ptr 0Ch

.text:00465738

.text:00465738 push ebp

.text:00465739 push ebx

(...)

.text:00465761 mov ecx, [esp+10h+arg_8]

.text:00465765 xor edx, edx

.text:00465767 lea eax, [esp+10h+var_18]

.text:0046576B push eax

.text:0046576C call @KiMigrateToNewKernelStack@12

Unfortunately, this simple change renders our previous technique completely
useless in the context of the affected systems, since it prevents us from control-
ling the TempSegCs and TempEsp fields, again. In order to escalate privileges
on Windows Vista or 7, the only way around is to come up with another way of
shifting the stack base address to achieve a trap frame mapping different from
the default one. At first, I believed that the problem was hopeless; it took over
two months to realize there might be a way to turn the security flaw into a
privilege escalation; the concept is, however, incomparably more complex than
in Windows XP.

6.1 Segment update faults

Whenever user- or kernel- code attempts to modify one of the six segment
registers, the CPU performs basic verification to ensure that the operation makes
sense (i.e. the target selector points to a valid GDT/LDT entry) and is allowed
from a security perspective. In case a failure occurs while loading a new segment
selector into a register, the CPU generates Interrupt 11 - Segment Not Present
(#NP)8. This fact is going to be particularly useful later in the paper.

As a matter of fact, the Windows kernel often loads cs:, ds: and other
segment registers on behalf of user-mode code; three notable examples of this
behavior are listed below:

1. The usage of SetThreadContext documented API results in having
the CONTEXT structure fields copied into a remote thread’s trap frame
and later loaded to actual registers.

2. The usage of the undocumented NtContinue service has the same effect,
but it only affects the context of the current thread.

8One exception to the rule is the ss: register, which has its own Stack Faults (#SS)
exception.

18



3. Windows VDM (Virtual DOS Machine) - in order to invoke execution
of arbitrary 16-bit code in a controlled environment, it is required to
call the NtVdmControl(VdmStartExecution) service from within the
NTVDM.EXE subsystem process, which also results in having the CPU
context loaded from a pre-defined location in Process Environment Block.

Since the KiSystemCallExit2 routine doesn’t perform an in-depth veri-
fication of the SegCs, SegDs, . . . , SegSs fields before using them, it is possible
to provide the kernel with a bogus selector and have it used as an (implicit)
operand in an instruction such as POP DS or IRETD. As a consequence of the
design allowing user-mode applications to generate kernel #NP exceptions, we
should expect the kernel to handle such events properly - and that is precisely
the case. If we take a look at the \base\ntos\ke\i386\trap.asm file, lines 4236 -
4346, we will see that the kernel performs analysis of the faulting instruction’s
opcode and responds accordingly (see Listing 14).

Listing 14: Windows #NP exception handler implementation

align dword
public _KiTrap0B

_KiTrap0B proc

(...)

Kt0b30:

(...)

mov eax, [ebp]+TsEip ; (eax)->faulted Instruction
mov eax, [eax] ; (eax)= opcode of faulted instruction
mov edx, [ebp]+TsEbp ; (edx)->previous trap exit trapframe

add edx, TsSegDs ; [edx] = prev trapframe + TsSegDs
cmp al, POP_DS ; Is it pop ds instruction?
jz Kt0b90 ; if z, yes, go Kt0b90

add edx, TsSegEs - TsSegDs ; [edx] = prev trapframe + TsSegEs
cmp al, POP_ES ; Is it pop es instruction?
jz Kt0b90 ; if z, yes, go Kt0b90

add edx, TsSegFs - TsSegEs ; [edx] = prev trapframe + TsSegFs
cmp ax, POP_FS ; Is it pop fs (2-byte) instruction?
jz Kt0b90 ; If z, yes, go Kt0b90

add edx, TsSegGs - TsSegFs ; [edx] = prev trapframe + TsSegGs
cmp ax, POP_GS ; Is it pop gs (2-byte) instruction?
jz Kt0b90 ; If z, yes, go Kt0b90

;
; The exception is not caused by pop instruction. We still need to check
; if it is caused by iret (to user mode.) Because user may have a NP
; cs and we will trap at iret in trap exit code.
;

19



cmp al, IRET_OP ; Is it an iret instruction?
jne Kt0b199 ; if ne, not iret, go bugcheck

What is even more, it turns out that causing an IRETD instruction to fail
upon an invalid SegCs value can have a very desirable impact on the layout of
the kernel stack. Let’s analyze the situation in more detail - the layout of the
stack right before the execution of IRETD is shown in Figure 8.

Figure 8: Kernel stack layout before IRETD execution

When IRETD loads the controlled (and intentionally bogus) SegCs value
from stack, the selector verification fails causing an #NP exception to be gen-
erated on top of the current stack layout (Image 9).

As a consequence of a nested interrupt, the new trap frame is shifted by 20
bytes (5 fields, each four-byte long). After the CPU passes the execution to
nt!KiTrap0B (the #NP handler), the execution path shown in Listing 15 is
taken.

Listing 15: IRETD failure handling in KiTrap0B

cmp al, IRET_OP ; Is it an iret instruction?
jne Kt0b199 ; if ne, not iret, go bugcheck

(...)

mov ecx, (TsErrCode+4)/4
lea edx, [ebp]+TsErrCode

Kt0d001:
mov eax, [edx]
mov [edx+12], eax
sub edx, 4

20



loop Kt0d001

sti

add esp, 12 ; adjust esp and ebp
add ebp, 12
mov ebx, [ebp]+TsEip ; (ebx)->faulting instruction
mov esi, [ebp]+TsErrCode
and esi, 0FFFFh
mov eax, STATUS_ACCESS_VIOLATION
jmp CommonDispatchException2Args0d ; Won’t return

The assembly is responsible for fixing the trap frame, adjusting the Esp and
Ebp registers and passing the execution down to a generic exception dispatcher.
From the perspective of controlling TempSegCs and TempEsp, the first part of
the code is particularly interesting - it basically merges the current trap-frame
with the left-overs of the previous one, and does so by moving the entire new
structure 12 bytes towards top of the stack. Image 10 illustrates the performance
of the loop in action.

Figure 9: Kernel stack layout after IRETD execution

After one trap frame is created from the two parts, both Esp and Ebp need
to be re-adjusted to point to the structure’s base address. Having a clean and
valid stack layout, the code proceeds to a generic exception dispatch routine.
But hey... something very important has just happened!

The process of moving an entire KTRAP FRAME structure forward by 12 bytes

21



Figure 10: Merging two trap frames into a single one.

greatly affects the TempSegCs and TempEsp fields - since they were mapped
lower than usual for a while, not initialized, and then copied into their usual
location, they now contain whatever was present in the old, temporary location.
And what was it? The DbgEip and DbgArgMark values from the very first trap
frame, respectively (fields that are 12 bytes below TempSegCs and TempEsp).

That’s correct - TempSegCs now takes the value of the old DbgEip field, while
TempEsp contains bytes previously consumed by KTRAP FRAME.DbgArgMark.
At the time of its existence, DbgEip address contained the original user-mode re-
turn address, making it almost entirely controllable by a ring-3 exploit. When it
comes to DbgArgMark, the field plays a role of a trap-frame marker and is always
set to a magic value of 0BADB0D00h, as observed in \base\ntos\ke\i386\
kimacro.inc and shown in Listing 16.

Listing 16: The magic DbgArgMark value exposed

mov [ebp]+TsDbgArkMark, 0BADB0D00h

Unfortunately, directly after filling TempSegCs and TempEsp with non-zero
values, the kernel attempts to dispatch the exception. Under typical circum-
stances, it is unable to handle the event, and terminates the process in emer-

22



gency mode without giving any chance to take advantage of the conducive stack
contents. In order to intercept the IRETD exception and regain control over the
process execution flow, it is necessary to attach a debugger process (through the
Windows Debug API) which will receive a notification about the event, and will
be able to modify the debuggee’s CPU context to restore proper functioning of
the process.

Specifically, when the IRETD instruction fails, the debugger receives an
EXCEPTION DEBUG EVENT signal, which can be handled by redirecting the
cs:eip pair to a valid location, and resuming the execution through Continue-
DebugEvent. In result, the debuggee continues its normal execution, but hav-
ing TempSegCs and TempEsp influenced by the #NP exception handler.

Before proceeding to the next section, let’s summarize the steps discussed
so far:

In debugger:

1. Create the core exploit process with a DEBUG PROCESS flag (in my case,
the NTVDM.EXE subsystem process),

2. Optionally - if using the NTVDM method of controlling IRETD parame-
ters, inject a DLL with the exploit into the debuggee,

3. Enter a standard debugger loop,

4. When EXCEPTION DEBUG EVENT is encountered, set the debuggee’s cs:
to a valid value (i.e. 0x001B on most systems) and point Eip into a stage-
two routine.

In debugee:

1. Optionally - if using a DLL within NTVDM, initialize a minimal VDM
subsystem,

2. Craft a CONTEXT structure to contain a valid context with a bogus cs:
register,

3. Use the structure to trigger an IRETD failure using one of the previously
discussed techniques,

4. ”Wait” until the debugger redirects the execution flow to stage-two rou-
tine.

6.2 Spraying kernel address space

The IRETD exception enables us to set the otherwise uninitialized TempEsp
pointer to a constant value of 0BADB0D00h, which is a step in the right di-
rection. To make the exploit work, we need to ensure that the virtual address
is mapped to non-pageable physical memory. Experimental data shows that
this memory region is usually not occupied by any of the default device drivers

23



present on Windows 7 or dynamic pool allocations. Therefore, the virtual ad-
dress can be subject to kernel address space spraying, a ring-0 equivalent of a
technique most commonly used for browser vulnerability exploitation [3] [1].

Very little information regarding kernel memory spraying is publicly avail-
able on the Internet. I believe it is mostly due to a relatively small number
of kernel-mode vulnerabilities, with even fewer bugs requiring any kind of ad-
dress space spraying. The subject in itself is worth a separate research - in this
section, I will only outline the basic concepts and tools which can be used to
achieve a decent level of spraying reliability.

When trying to reach a certain kernel-mode address with non-pageable mem-
ory, the amount of physical memory available on the machine plays a key
role, especially in cases where there is less RAM than the size of kernel ad-
dress space (usually 2GB). For the purpose of performing controlled or semi-
controlled (in terms of content) allocations from the kernel pools, a pair of
NtCreateSymbolicLinkObject (pageable) and NtQueueApcThread (non-
pageable memory) services is probably the simplest yet very effective choice for
Windows Vista and 7.

In its great courtesy, Windows supports a great number of statistics and
performance information sources, which can be easily incorporated into the
spraying code in order to improve the invaluable accuracy; one example of such
source is the SystemPerformanceInformation class, providing detailed informa-
tion regarding various aspects of system memory usage. What can be even
more useful, it is possible to enumerate all executive objects accessible through
handles, owned by every process running in the system - together with the cor-
responding virtual addresses - using the SystemHandleInformation class. When
combined with object-based spraying, both mechanisms make it feasible to reach
any specific kernel address with a high degree of accuracy (depending on various
conditions).

The proof-of-concept code developed to demonstrate successful exploitation
of the vulnerability works by raising the virtual address space consumption to
40% using paged pool and symbolic link objects (resulting in the occupation of
virtual addresses up to 0B0000000h). After that, the exploit starts to spray the
memory using KAPC structures allocated on NonPaged pool - when the system
runs out of physical memory or a 80% address space consumption is reached,
the spraying is finished.

For an in-depth analysis of the Windows kernel pool allocator, please refer
to an excellent paper and slides published by Tarjei Mandt in 2011 [10].

6.3 A finishing touch

After putting all of the discussed techniques to work and triggering the vul-
nerability inside of the exploit child process, we should end up having ring-0
privileges after returning from the first interrupt encountered while executing
code under the LDT[0] segment. Keep in mind that final value of the cs: regis-
ter is based on the low 16 bits of the user-mode interrupt return-address at the
time of invoking a syscall to pass a bogus SegCs value (e.g. NtContinue). In

24



order to grant elevated privileges, you might need to set up a simple assembly
wrapper for calling NtContinue or NtVdmControl, and position it at the
beginning of a 64kB-aligned memory block.

Listing 17: An assembly wrapper for calling a CONTEXT-switching system
service

+0x00: NOP
+0x01: NOP
+0x02: POP AX
+0x04: MOV EDX, EBP
+0x06: INT 2Eh
+0x08: ...

Furthermore, you should always remember to clean up the damage made by
the kernel to itself during the exploitation. In this case, the kernel arbitrar-
ily overwrites 12 bytes residing at {0BADB0D00 - 0Ch, 0BADB0D00}, which
might later manifest itself in the form of system instability.

After acquiring ring-0 privileges for your assembly payload, the rest of the
steps can be duplicated from the Windows XP exploitation process: overwriting
the HalDispatchTable+4 pointer and assigning the SYSTEM security token
to a custom application work fine on both system platforms. The four kernel
API functions used in the previous exemplary payload suffice to replace the
primary token of any process on every Windows NT-family system without
applying any major modifications to the code.

6.4 Putting it all in one place

Having described all techniques and concepts required to achieve a decent degree
of exploitation reliability, let’s summarize the major steps taken by a successful
proof-of-concept exploit. Since the debugger’s role has not changed since when
it was last described, lets focus on the debuggee functionality.

1. Optionally - if using a DLL within NTVDM, initialize a minimal VDM
subsystem,

2. Initialize a system service stub, later resulting in having a XXXX0008
return address pushed on the trap frame,

3. Craft a CONTEXT structure to contain a valid context with a bogus cs:
register,

4. Use the structure to trigger an IRETD failure using one of the previously
discussed techniques,

5. ”Wait” until the debugger redirects the execution flow to stage-two rou-
tine,

6. Initialize pointers to kernel-mode API functions required by stage-two
payload,

25



7. Create a code segment entry in LDT[0],

8. Spray the kernel virtual address space, in order to reach the 0BADB0D00h
address with non-pageable, writable memory mapping,

9. Jump into the LDT[0] segment and trigger the vulnerability,

After returning with ring-0 privileges:

1. Fix the broken values around 0BADB0D00h,

2. Overwrite the HalDispatchTable+4 pointer with stage-two payload ad-
dress,

3. Emulate a regular return to user-mode.

4. Invoke the overwritten function pointer through nt!NtQueryInterval-
Profile,

5. Escalate the security token of a chosen process (e.g. a command shell),

6. Restore original HalDispatchTable+4 value and terminate.

A few minor steps such as payload initialization or spawning a command
shell are not covered in the list, being either obvious or optional steps. Assuming
successful completion of all the key stages of exploitation, one should be able to
see his process running with the NT AUTHORITY
SYSTEM privileges, as shown in Image 11.

7 Conclusion

The number of vulnerabilities disclosed, exploited, publicly discussed and fixed
in Windows user-mode client applications during the few recent years undoubt-
edly out-weights the quantity of kernel-mode security issues. As defense-in-
depth mitigation mechanisms (such as ASLR, DEP or sandboxing) for desktop
programs are becoming more and more effective, I expect to see an increase
in the focus put into other promising targets, poorly secured and vulnerable
kernel-mode code being the most intuitive choice. This article shows how ring-
0 exploitation techniques, like stack and pool spraying combined with kernel
address space information leaks and other undocumented functionalities (user-
mode callbacks, specific exception handlers behavior) can prove useful for un-
common and non-trivial vulnerability exploitation. As Microsoft is going to
incorporate numerous new kernel-level anti-exploitation measures in the Win-
dows 8 build, I am really excited to see how the ring-0 security field - and
specifically, offensive techniques - are going to evolve and develop in the near
future.

26



Figure 11: Escalated command shell, a result of successful exploitation on a
Windows 7 platform.

References

[1] Alexander Sotirov: Heap Feng Shui in JavaScript. https://www.
blackhat.com/presentations/bh-europe-07/Sotirov/
Presentation/bh-eu-07-sotirov-apr19.pdf.

[2] Bartosz Wojcik: Konkurs Pimp My CrackMe. http://www.secnews.
pl/2011/04/28/konkurs-pimp-my-crackme/.

[3] Corelan Team (corelanc0d3r): Exploit writing tuto-
rial part 11 : Heap Spraying Demystified. https:
//www.corelan.be/index.php/2011/12/31/
exploit-writing-tutorial-part-11-heap-spraying-demystified/.

[4] Intel: Intel 64 and IA-32 Architectures Software Developer’s Manual, Vol-
ume 3A. Intel Corporation, 2007.

[5] Mateusz ”j00ru” Jurczyk: nt!NtMapUserPhysicalPages and Kernel Stack-
Spraying Techniques. http://j00ru.vexillium.org/?p=769.

[6] Mateusz ”j00ru” Jurczyk: Protected Mode Segmentation as a powerful anti-
debugging measure. http://j00ru.vexillium.org/?p=866.

27

https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
http://www.secnews.pl/2011/04/28/konkurs-pimp-my-crackme/
http://www.secnews.pl/2011/04/28/konkurs-pimp-my-crackme/
https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/
https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/
https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/
http://j00ru.vexillium.org/?p=769
http://j00ru.vexillium.org/?p=866


[7] Mateusz ”j00ru” Jurczyk: Windows Security Hardening Through Kernel
Address Protection. http://j00ru.vexillium.org/?p=1038.

[8] Ruben Santamarta: Exploiting Common Flaws in Drivers. http:
//reversemode.com/index.php?option=com_content&task=
view&id=38&Itemid=1.

[9] Tarjei Mandt: Kernel Attacks Through User-Mode Callbacks. http://
mista.nu/research/mandt-win32k-slides.pdf.

[10] Tarjei Mandt: Kernel Pool Exploitation on Windows 7. http://www.
mista.nu/research/MANDT-kernelpool-PAPER.pdf.

[11] Z0mbie: Adding LDT entries in Win2K. http://vxheavens.com/lib/
vzo13.html.

28

http://j00ru.vexillium.org/?p=1038
http://reversemode.com/index.php?option=com_content&task=view&id=38&Itemid=1
http://reversemode.com/index.php?option=com_content&task=view&id=38&Itemid=1
http://reversemode.com/index.php?option=com_content&task=view&id=38&Itemid=1
http://mista.nu/research/mandt-win32k-slides.pdf
http://mista.nu/research/mandt-win32k-slides.pdf
http://www.mista.nu/research/MANDT-kernelpool-PAPER.pdf
http://www.mista.nu/research/MANDT-kernelpool-PAPER.pdf
http://vxheavens.com/lib/vzo13.html
http://vxheavens.com/lib/vzo13.html

	General information
	Initial crash
	Vulnerability analysis
	Exploitation - initial notes
	Windows XP exploitation
	Trap frame allocation
	What's next?
	Writing a kernel-mode payload

	Windows Vista / 7 exploitation
	Segment update faults
	Spraying kernel address space
	A finishing touch
	Putting it all in one place

	Conclusion

