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1. Basic Information 
 

Name Windows XP SP3 Registry Handling Buffer Overflow 

Class Design Error 

Impact Medium / High 

Credits Matthew “j00ru” Jurczyk, Gynvael Coldwind 

Discovered 2008-12-20 

Published 2010-05-29 

 

 

2. Abstract 
 

Microsoft Windows XP is a commonly used desktop operating system, released with 

Service Pack 3 at the time of writing this paper. 

The vulnerable system component is heart of Windows NT family – the ntoskrnl.exe 

kernel executable itself. It is responsible for performing nearly all the critical system 

operations – most of the requests come from user-mode applications using the 

SYSENTER mechanism. System call set describes the functions available for a low-level 

application programmer – if one finds a buffer-overflow vulnerability in a syscall 

handler, it is very likely that he also will be able to run arbitrary code in the kernel’s 

context (ring 0). 

 

The vulnerability covered in this paper relies on the lack of user’s input data validation in 

one of the Windows registry system call functions. The bug itself is present in an internal 

kernel function related to the “symbolic linking” mechanism, that provides a possibility 

to create invisible transition between a “fake” key (the forwarder) and the real ones. By 

crafting a properly malformed input as a function parameter, one is able to cause a pool-

based overflow, consequently leading to a potential code execution and complete system 

compromitation. 

 

The affected Microsoft Windows versions are all the systems prior to Windows Vista 

(including Windows XP SP3 with latest patches). 

 

 

 



3. Vulnerability details 
 

Before I start describing how the vulnerability itself works, I will shortly explain how the 

internal registry symbolic links work and how they are handled by the Windows kernel. 

The entire Windows registry consists of a number of mixed .DAT files, each containing 

information about a separate registry tree. The binary format introduced by Microsoft 

decades ago has not been fully documented by the vendor himself, though many people 

decided to carry out some research on this topic. The results of their work are really 

promising – most of the format has been successfully reversed and put on downloadable 

websites. Since the format is being developed all the time as new requirements appear, 

the meaning of some flags and constant values being used in modern system is not yet 

known. 

Each single registry key has its own structure inside the source REGF file. The structure 

contains every information that the system could possibly need during its work. The most 

important fields regarding a key record are: 

 Key type bit mask 

 Parent key record 

 Point to sub-key list 

 Pointer to security record 

 Key name 

 

This time, only the first field will be explained in detail. Although different sources claim 

that the, so called “Enumeration” field is a “static” value and can be set to only one 

predefined value, it’s actually not true. It turned out that the following values can be 

mixed together, forcing the system to deal with a “malformed” key type, giving 

interesting results: 

 KEY_ROOT:   0x2C 

 KEY_LINK:     0x10 

 KEY_REGULAR:  0x20  

 

So here is the way we can make one key point to another without even being “noticed”: 

 Put a link bitmask into the Type field of NK record 

 Create a value named “SymbolicLinkValue” (this is a fixed name and cannot be 

changed!), of an internal type – REG_LINK (6) inside that key 

 Put the destination path into the newly created value as a normal Unicode string. 

 

After these actions are performed, the key should no longer exist as a normal record – 

every reference to a registry path containing a symbolic link is handled by the kernel so 

that the user-mode programs gets an open HANDLE to where the link points to, not to 

the forwarding key itself. 

 



Under normal circumstances, the kernel does not use the registry contents during 

“critical” operations, but the link translation simply cannot be achieved without accessing 

the SymbolicLinkValue record. Having some essential knowledge about the registry 

internals, let’s begin with the real vulnerability roots. It would be best for the reader to 

operate on the Windows Kernel Research v1.0 sources since it shows the nature of the 

bug in a “clear form”, but listings from both IDA and WRK will be presented below. 

 

The buffer overflow is directly caused by the SymbolicLinkValue handling 

implementation. Most of the real job is performed by a non-exported function called 

CmpGetSymbolicLink. The function assumes that since the value is an Unicode string and 

is not generally used by any 3
rd

 part applications (though some critical Windows 

components aim to use it for various purposes), its size is not going to be greater than 

0xFFFF (65535d) bytes. The below code snippets should make everything clear: 

 
if(!GetValueData(Buffer,&ValueLength)) 

{ 

  fail; 

} 

 

Length = (USHORT)ValueLength + sizeof(WCHAR); 

 

(vulnerable function pseudocode) 

 
PAGE:0049A071                 movzx   eax, word ptr [edi] 

PAGE:0049A074                 lea     esi, [esi+eax+2] 

 

Obviously, the highest 16 bits of the value length are ignored by the system parser, which 

could potentially lead to some kind of corrupted allocation and further code execution… 

Let’s take a look at the rest of the function code: 

 

   
NewBuffer = Allocate(Length); 

if(NewBuffer == NULL) 

{ 

  fail; 

} 

(vulnerable function pseudocode) 

 
PAGE:004CA567 loc_4CA567:  

PAGE:004CA567                 push    20204D43h       ; Tag 

PAGE:004CA56C                 push    esi             ; NumberOfBytes 

PAGE:004CA56D                 push    1               ; PoolType 

PAGE:004CA56F                 call    _ExAllocatePoolWithTag@12  

 

… and further… 

 



 CopyMemory(NewBuffer, Buffer, (DWORD)ValueLength); 

(vulnerable function pseudocode) 

 
PAGE:004CA57C                 mov     ecx, [ebp+var_8] 

PAGE:004CA57F                 mov     [ebp+Destination.Length], cx 

PAGE:004CA583                 mov     edx, ecx 

PAGE:004CA585                 shr     ecx, 2 

PAGE:004CA588                 mov     [ebp+Destination.MaximumLength], 

si 

PAGE:004CA58C                 mov     esi, [ebp+var_C] 

PAGE:004CA58F                 mov     [ebp+Destination.Buffer], eax 

PAGE:004CA592                 mov     edi, eax 

PAGE:004CA594                 rep movsd 

PAGE:004CA596                 mov     ecx, edx 

PAGE:004CA598                 and     ecx, 3 

PAGE:004CA59B                 cmp     [ebp+Source], 0 

PAGE:004CA59F                 rep movsb 

 

The case should need no explanation now. A 16-bit wrapped integer is used to allocate 

some pool memory, and then the other – real size of the data is used as RtlCopyMemory 

function parameter! 

 

This typical kind of vulnerability creates a chance to achieve arbitrary code execution 

inside the ExFreePool kernel function – every user present on the system is allowed to 

create links without any restrictions, thus giving the vulnerability a “privilege escalation” 

status. 

 

What should be noted is that the amount of bytes we use to overwrite the allocated 

memory area is not fully controlled by the attacker. To be more precise, it is not possible 

to say “An 8-byte overwrite is needed to gain control over the computer” and perform 

such attack – the vulnerability allows to overflow the buffer by any multiplicity of 

0x10000. In other words, one can overflow the pool using at least ~65kB of junk data, 

which actually causes really serious damage to the drivers as well as the kernel module 

itself.  

 

Another exploitation obstacle is an internal, so-called “deferred free” mechanism. In 

order to enhance the system performance, a special pending free requests’ list is kept in 

the kernel. Every time ExFreePoolWithTag function is called, a new record is being 

pushed on the list. When its size reaches a boundary value, it is being flushed by handling 

all the requests at once. Since triggering a pool overflow leads to most of critical 

kernel/driver data being irreversibly overwritten, there is no way the system could keep 

running correctly up to a moment when the real chunk deallocation is performed – one 

can either trigger code execution immediately after the overflow itself, either end up 

having the machine crashed inside some random device driver. 

 



The author’s research implies that the “deferred free” mechanism is active on machines 

with at least ~512MB of physical memory. A relatively stable exploit has been developed 

for machines with lower amount of RAM. Unsuccessful or impossible (due to the above 

restrictions) exploitation process always leads to Denial of Service conditions, crashing 

the system.  

 

 

4. Impact 
 

The vulnerability allows an attacker to run arbitrary code with the system kernel (highest 

possible) privileges. It can be achieved using any kind of user account, both locally and 

remotely.  The impact of a single attack, considering the above conditions, is rated as 

medium/high. 
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