
Windows XP SP3 CSRSS Process Handling

Local Privilege Escalation

by Matthew “j00ru” Jurczyk and Gynvael Coldwind

Hispasec

1. Basic Information

Name Windows XP SP3 CSRSS Local Privilege Escalation

Class Design Error

Impact High

Credits Matthew “j00ru” Jurczyk, Gynvael Coldwind

Discovered 2008-12-16

Published 2010-05-29

2. Abstract

Microsoft Windows XP is a commonly used desktop operating system, released with

Service Pack 3 at the time of writing this paper.

One of the system’s critical components is the csrss.exe executable file. When one of the

users decides to log out from the local machine, all the processes running under his

account are respectively terminated. Though, it is possible for a restricted user to perform

specific actions, consequently leading to a so-called “keep alive” situation – after the

current user logs out, some chosen processes are not being shutdown like the rest of them

– their execution is kept until they are closed manually (using taskmgr.exe etc.)

Assuming that the attacker has direct access to a restricted user’s account, and may

launch a program able to survive the logout, a privilege escalation attack may take place,

since the keep-alive process has access to hardware input and most of the system events,

no matter whether/what user is currently logged on the local machine. This includes

enumerating windows, manipulating keyboard and mouse (key-logging is possible as

well as sending own input messages), making screen-shots and many, many others.

The analysis made so far indicates that Windows Vista is not prone to this vulnerability,

though it is not yet confirmed.

3. Vulnerability details

The CSRSS (csrss.exe) Windows component, mentioned before, stands for Client/Server

Runtime Subsystem. The entire subsystem is build with different modules, each

responsible for handling specific type of process requests (winsrv, basesrv, coniosrv).

It played an important role in some older system versions. Nowadays, it is mainly

responsible for the messages regarding Win32 console windows and registering process-

related events like CreateProcess, TerminateProcess, CreateThread etc. The last

functionality is the one we are mostly interested in.

As csrss.exe is a system process, it always runs with the SYSTEM user privileges. Being

designed to communicate with other processes, it must possess some kind of connection

channel with every process running on the local machine. In this particular case,

Microsoft decided to use the port mechanism. Every time a new process is being created,

its parent sends a kind of “registration-packet”, informing CSRSS about the ongoing

event. What is more, before the new process code is executed (the execution reaches the

program’s EntryPoint), Windows loader calls the NtSecureConnectPort function, using a

reserved “\Windows\ApiPort” name. After the connection with csrss.exe port is

established, the process can send it’s requests using another function from the Csr*

family – CsrClientCallServer. Enough theory, let’ s have a look at the real

vulnerability details.

The interesting part of the Windows XP internal _ExitProcess function listing is as

follows:

.text:7C81CD69 call esi ; NtTerminateProcess(x,x)

.text:7C81CD6B mov [ebp+var_E0], eax

.text:7C81CD71 call _LdrShutdownProcess@0

.text:7C81CD76 mov [ebp+var_B4], edi

.text:7C81CD7C push 4

.text:7C81CD7E push 10003h

.text:7C81CD83 push ebx

.text:7C81CD84 lea eax, [ebp+var_DC]

.text:7C81CD8A push eax

.text:7C81CD8B call ds:__imp__CsrClientCallServer@16

.text:7C81CD91 push edi

.text:7C81CD92 push 0FFFFFFFFh

.text:7C81CD94 call esi ; NtTerminateProcess(x,x)

.text:7C81CD96 or [ebp+ms_exc.disabled], 0FFFFFFFFh

.text:7C81CD9A call sub_7C841B32

.text:7C81CD9F

.text:7C81CD9F loc_7C81CD9F: ; CODE XREF: _ExitProcess(x)+1Fj

.text:7C81CD9F mov ecx, [ebp+var_1C]

.text:7C81CDA2 call @__security_check_cookie@4

.text:7C81CDA7 call __SEH_epilog

.text:7C81CDAC retn 4

.text:7C81CDAC __ExitProcess@4 endp

As you can see, a message indexed as 10003h is sent to the CSRSS port. This number

turns out to point at the _BaseSrvExitProcess internal basesrv.dll function, responsible

for the proper actions related to the termination of current process (removing from the

process list etc). What it means is that every time any process is being closed, a specific

request is sent to the subsystem, so as it can update its internal structures and stuff.

The vulnerability itself takes advantage of the fact that any process can send such a

message during its execution, even if it is not yet going to be terminated. This is very

likely to make CSRSS “think” that after it receives such a request, the sender application

disappears and doesn’t have to be cared about anymore. Therefore, if we run our program

with the following line at the beginning of the code:

ULONG retValue=0;

CsrClientCallServer(&retValue,0,0x10003,4);

then the rest of the code would execute even if we decide to log out. This fact has very

serious security consequences. Since such a process might stay unnoticed even after some

other user (i.e. admin) logs on the machine, and it can control most of input messages

from the keyboard, mouse, screen and what is more, enumerate existing windows as well

as perform some operations on them (like setting the window’s title), it can be easily used

to escalate the privileges of the attacker’s user.

As csrss.exe establishes a port connection with every process running on the system,

the only thing that the attacker must be allowed to do is to launch his own executable file.

In order to accomplish a successful privilege escalation attack, the attacker must then log

out and wait until some higher-privileged user logs in. After that, the process should then

immediately perform appropriate actions to elevate the privileges, before it could even be

noticed by other computer users.

4. Impact

This vulnerability allows a local attacker to execute any code (using the controlled parts

of system) in the context of another user, but only if that user logs into his account on the

same computer.

The impact of a single attack, considering the above requirements, is considered as high.

However, if malware would implement this exploit, the impact may change to very high.

5. Disclaimer

Copyright by Hispasec

