==[Basic information]==

Name : z1ib Use of Uninitialized "check" Stream Field Vulnerability
Impact : Low

Class : Potential disclosure of uninitialized heap memory

Discovered : 2014-01-17

Reported : 2014-01-22

Published : 2014-04-30

Credit : Mateusz "j00ru" Jurczyk of the Google Security Team
Vulnerable : z1ib 1.2.8 and previous versions

==[Introduction]==

Software depending on zlib 1.2.8 and previous versions which use a specific
code pattern to interact with the compression library to decompress
DEFLATE-compressed data may be affected by a “use of uninitialized heap memory”
bug due to lack of proper initialization of the “inflate state.check” internal
structure field performed by zlib when handling incorrectly formatted input
data. The only two open-source clients confirmed to use the code pattern
required to trigger the condition are latest versions of the FFmpeg transcoding
library (“Flash Screen Video decoder” component) and LibTIFF image library (ZIP
and PixarLog compression support); however, other clients might also suffer
from the problem.

On the example of LibTIFF 4.0.3 and Safari 7.0.1 running on Mac 0S X 10.9.1, we
have shown that certain scenarios may allow an attacker to use specially
crafted input data to reason about the properties of the uninitialized memory,
thus potentially gaining access to sensitive, leftover information stored in
the process heap. Overall, however, there is a number of limitations which - in
our opinion - make practical attacks infeasible and unlikely to take place in
real world; this is primarily due to the volume of necessary input data and a
finite number of disclosed bits (a maximum of 32 bits at a time). These and
other limitations are explained in more detail later in the advisory.

==[Description]==

The inflation process using zlib starts with an inflateInit () call, which
allocates an internal “inflate state” structure of around 7,000 bytes
(depending on the target architecture):

-—- inflate.c ---

208: state = (struct inflate state FAR *)

209: ZALLOC (strm, 1, sizeof (struct inflate state));
--- inflate.c ---

The “ZALLOC” macro is defined as:

--- zutil.h --—-

244 : #define ZALLOC (strm, items, size) \

245: (*((strm)->zalloc)) ((strm)->opaque, (items), (size))
---— zutil.h ---

If the caller specifies its own memory allocator, it is used accordingly;
otherwise, the default “zcalloc” allocator is invoked:

--- zutil.c ---

304: voidpf ZLIB INTERNAL zcalloc (opaque, items, size)

305: voidpf opaque;

306: unsigned items;

307: unsigned size;

308: {

309: if (opaque) items += size - size; /* make compiler happy */
310: return sizeof (uInt) > 2 ? (voidpf)malloc (items * size)
311: (voidpf)calloc (items, size);
312: }

--- zutil.c ---

The above translates to a malloc() call on 32-bit and 64-bit platforms, which
does not guarantee that the allocated memory area must be zero-initialized.
Therefore, the presence of the bug depends on a client which doesn’t provide
its own memory management interface (true in most cases) or provides one that
doesn’t pre-initialize newly allocated memory blocks.

Most fields in the structure are initialized by the inflatelInit2(),

inflateReset () or inflateResetKeep () routines (all are descendants of
inflateInit()); the remaining portions of the state are generally written to
during the “HEAD” state of inflate(). It turns out, however, that if either of

the early header/compression checks fail (lines 657-670), the “dmax” and
“check” fields are not properly initialized (lines 680 and 682):

-—- inflate.c ---

657 : if (! (state->wrap & 1) || /* check if zlib header allowed */
658: #else

659: if |

660: #endif

661: ((BITS(8) << 8) + (hold >> 8)) % 31) {

062: strm->msg = (char *)"incorrect header check";

663: state->mode = BAD;

664: break;

065: }

666: if (BITS(4) != Z DEFLATED) {

067 : strm->msg = (char *)"unknown compression method";
668: state->mode = BAD;

669: break;

070: }

671: DROPBITS (4) ;

672: len = BITS (4) + 8;

073: if (state->wbits == 0)

674: state->wbits = len;

675: else if (len > state->wbits) {

676: strm->msg = (char *)"invalid window size";

677: state->mode = BAD;

678: break;

©679: }

680: state->dmax = 1U << len;

681: Tracev ((stderr, "inflate: z1lib header ok\n"));
082: strm->adler = state->check = adler32 (0L, Z NULL, 0);
683: state->mode = hold & 0x200 ? DICTID : TYPE;

684 : INITBITS () ;

685: break;

--- inflate.c ---

While “dmax” is initially written to by inflateResetKeep (), it is not the same
for “check”, which still holds whatever value was located at that heap address
in the previous allocation. In most cases, the caller would consider the error
critical and bail out upon the first failed inflate() call. However, some
software attempt to recover from the condition and continue the decompression
process by taking advantage of the inflateSync() function. One instance of such
software is LibTIFF, which uses the following decompression loop:

--- libtiff/tif zip.c ---

170: do {

171: int state = inflate(&sp->stream, Z PARTIAL FLUSH);
172: if (state == Z_STREAM END)

173: break;

174: if (state == Z DATA ERROR) {

175: TIFFErrorExt (tif->tif clientdata, module,

176: "Decoding error at scanline %1lu, %s",

177: (unsigned long) tif->tif row, sp->stream.msq);
178: if (inflateSync(&sp->stream) != Z OK)

179: return (0);

180: continue;

181: }

182: if (state != Z OK) {

183: TIFFErrorExt (tif->tif clientdata, module, "ZLib error: %s",

184: sp—->stream.msqg) ;

185: return (0);

186: }

187: } while (sp->stream.avail out > 0);
--- libtiff/tif zip.c ---

Once the inflate() function returns an error code, the library attempts to
gracefully handle the supposedly corrupted input file by trying to synchronize
to the nearest DEFLATE flush point, implemented as shifting the input pointer
to the next sequence of 0x00, 0x00, Oxff, Oxff bytes. During the second
inflate() call (post-resynchronization), header parsing is skipped and the
function proceeds directly to processing of compressed data, due to
inflateSync() setting the internal state to “TYPE” (line 1416):

-—- inflate.c ---

1411: /* return no joy or set up to restart inflate() on a new block */
1412: if (state->have != 4) return Z DATA ERROR;

1413: in = strm->total in; out = strm->total out;

1414: inflateReset (strm) ;

1415: strm->total in = in; strm->total out = out;

1416: state->mode = TYPE;

1417: return Z OK;

--- inflate.c ---

The “TYPE” mode of operation (representing DEFLATE parsing) and all further
modes assume that the “check” field has been previously initialized. Upon the
completion of DEFLATE data decompression, the final “CHECK” state is entered,
which uses the uninitialized value to seed the ADLER32 hash update function and
later to compare the new hash against a 32-bit hash value found in the input
stream. The “if” statement in lines 1184 - 1188 is the first location in the
code where a decision is made based on the non-deterministic initial value of
“check”:

--- inflate.c ---

1174: case CHECK:

1175: if (state->wrap) {

1176: NEEDBITS (32) ;

1177: out -= left;

1178: strm->total out += out;

1179: state->total += out;

1180: if (out)

1181: strm->adler = state->check =
1182: UPDATE (state->check, put - out, out);
1183: out = left;

1184: if ((

1185: #ifdef GUNZIP
1186: state->flags ? hold

1187: #endif

1188: ZSWAP32 (hold)) != state->check) {

1189: strm->msg = (char *)"incorrect data check";

1190: state->mode = BAD;

1191: break;

1192: }

1193: INITBITS () ;

1194: Tracev ((stderr, "inflate: check matches trailer\n"));
1195: }

1196: #ifdef GUNZIP

1197: state->mode = LENGTH;

-——- inflate.c ---

If the two 32-bit values match, inflate() returns Z STREAM END and the
decompression is considered complete. Otherwise, a Z DATA ERROR exit code is
returned, but the internal state still reflects the outcome of successful
decompression, i.e. “avail out” and “next out” fields are updated, and the only
relevant difference in program state is the return value.

For inflate/inflateSync decompression loops such as the one implemented in
LibTIFF, it is possible to try to guess the initial leftover “check” contents
by crafting a long sequence of DEFLATE-compressed bytes separated by flush
point signatures and ADLER-32 hash values corresponding to the guessed values.
This concept is further discussed in the following section.

==[Proof of Concept]==

As it is possible to efficiently compute the ADLER-32 hash for any data and
assumed initial seed, we can predict the values being compared against in the
“CHECK” mode depending on the initial contents of the uninitialized fields. As

a result, it is possible to create the following input data stream:

[invalid header]

[flush point signature] [deflate(byte)] [ADLER-32 hash guess]
[flush point signature] [deflate(byte)] [ADLER-32 hash guess]
[flush point signature] [deflate(byte)] [ADLER-32 hash guess]

If the number of entries in such a stream equals the number of expected output
bytes plus one, then in case of the aforementioned inflate/inflateSync loop:

(*) 1if one of the entries contains a correct guess (ADLER-32 hash of the data
decompressed so far seeded with the initial value of the uninitialized “check”

field), inflate() returns Z STREAM END, the loop terminates and data
decompression fails because not enough bytes are found in the output buffer
(strm.avail out != 0).

(*) 1if none of the entries match the actual hash value (i.e. the initial
“check” value was outside the scope of all guesses in the stream), the entirety
of the output buffer is filled with data and thus decompression succeeds.

Obviously, the above behavior can be used to determine if 32 bits of leftover
heap memory is equal to a particular set of values specified in the input
stream or not, based on the success of decompression (manifested by rendering
or not rendering an image in case of most LibTIFF clients).

More interestingly, though, timing attacks could also be used to extract
portions of information regarding the value being disclosed - even if stream
decoding fails, the amount of time it takes to fail is directly proportional to
the offset of the stream entry containing the valid guess. This can be
demonstrated on the example of the “tiffinfo” utility (part of LibTIFF); if we
compile the executable with a modified version of libz which prints out the
leftover value immediately after allocation, and run it against a .TIFF file
containing 2724 guesses that the hash is a Oxxxxxx0 value (00000000, 00000010,

., Offffff0), it is clearly visible that the processing time reveals the
estimate range of the number:

S time tools/tiffinfo -D -1 4096x4096.tif 2>/dev/null

TIFF Directory at offset 0x8 (8)
Image Width: 4096 Image Length: 4096
Resolution: 200, 200 pixels/inch
Bits/Sample: 8
Compression Scheme: Deflate
Photometric Interpretation: min-is-black
Orientation: row 0 top, col 0 1lhs
Samples/Pixel: 1
Rows/Strip: 4096
Planar Configuration: single image plane
Color Map: (present)

[z1lib] initial state->check: 3fab020

real Om4.026s
user Om2.380s
Sys Oml.620s

S time tools/tiffinfo -D -1 4096x4096.tif 2>/dev/null

[z1lib] initial state->check: 1£d5490

real Om2.146s
user Oml.320s
Sys Om0.800s

S time tools/tiffinfo -D -1 4096x4096.tif 2>/dev/null

[z1lib] initial state->check: 275ae90

real Om2.543s
user Oml1.470s
Sys Oml.050s

S time tools/tiffinfo -D -1 4096x4096.tif 2>/dev/null

[...]
[z1ib] initial state->check: 51a2ed0

real Om5.050s
user Om2.760s
Sys Om2.260s

Enclosed with this advisory is the source code (zlib stream gen.py,

tif poc.nasm files) and compiled, binary proof of concept file (256x256.tif).
The image contains 65536 DEFLATE entries, each guessing that the initial
“check” value is equal to its index in the stream, covering the [0000 ... ffff]
range. When opened in Safari 7.0.1 on a Mac 0S X 10.9.1, the image will
sometimes render and sometimes not, depending on whether any of the upper 16
bits of the uninitialized value are set.

Note that while it might be potentially possible to disclose certain
characteristics of the 32-bit value, extracting concrete values of each or all
bits is usually not feasible. There are several primary problems stopping most
or all practical attacks:

(*) The ADLER-32 hash function doesn’t use the full 32-bit space, so hash
collisions may occur, sometimes making it impossible to distinguish between two
seeds resulting in the same output hash for specific input data.

(*) For each 32-bit value guess, at least 11 bytes of data in the input
stream are required (4 bytes for the synchronization signature, 3 for a single
deflated data and 4 for the hash wvalue). As a consequence, streams testing a 24
bit space consume 177MB of disk space / internet transfer / memory, while

streams testing 2728 values are 2.75GB in size.

(*) Processing of such large volumes of data (not to mention storage and
transfer over a wire) takes a considerable amount of time, making attacks
“noisy” (if at all possible). For example, Safari on a 2.26 GHz Intel Core 2
Duo MacBook Pro is only able to process around 65535 pixels (16 bits worth of
guesses) per second according to our tests.

The above limitations make the vulnerability unlikely to be used in generic
attacks against users; however, it might still prove useful in very specific
scenarios.

