
~ 1 ~

Exploiting the otherwise non-exploitable

Windows Kernel-mode GS Cookies subverted

Matthew "j00ru" Jurczyk
Hispasec

Gynvael Coldwind

January 11, 2011

Abstract: This paper describes various techniques that can be used to reduce the effective

entropy of GS cookies implemented in a certain group of Windows kernel-mode executable

images by roughly 99%, or otherwise defeat it completely. This reduction is made possible due

to the fact that GS uses a number of extremely weak entropy sources, which can be predicted

by the attacker with varying (most often - very high) degree of accuracy. In addition to

presenting theoretical considerations related to the problem, the paper also contains a great

amount of experimental results, showing the actual success / failure rate of different cookie

prediction techniques, as well as pieces of hardware-related information. Furthermore, some of

the possible problem solutions are presented, together with a brief description of potential attack

vectors against these enhancements. Finally, the authors show how the described material can

be practically used to improve kernel exploits’ reliability - taking the CVE-2010-4398 [1] kernel

vulnerability as an interesting example.

1. Introduction

The stack-based buffer overflow class is one of the most commonly known software

vulnerability types, since the very first years of the software security industry. As a consequence

of Intel processor architecture, design notes and manuals, a majority of system platforms and

programming conventions are based on heavy stack utilization, mostly for the purpose storing of

stack frames, return addresses and local variables. Although the design can be considered

relatively efficient in terms of native code execution time, it also puts applications or entire

systems at serious security and reliability risk. Placing local variables and buffers in the same

continuous memory context together with critical pointers to executable code might turn out to

be exceptionally dangerous, if the program or a single procedure is prone to a security flaw.

Some of the potential scenarios, in which an attacker would be able to alter the return address,

include string-based buffer overflows (e.g. a typical boundless strcpy function call), other buffer

overflow classes, out-of-bounds array writes and other, less often observed flaws.

Through decades, researchers have invented a number of techniques, improving the general

reliability level of stack-based exploitation. At some point in time, whenever a security expert did

manage to modify a legit return address, and point it into user-controlled memory areas, he

~ 2 ~

would be able to execute malicious code in the context of the affected application, with nearly a

100% success rate. In order to address the entire attack surface, compiler vendors began to

equip the output binaries with various protection schemes, such as local variable reordering, or

stack cookies (otherwise known as stack canaries). The latter mechanism is known under

several names, depending on the implementation in consideration; the most important of which

are: StackGuard and ProPolice for GCC, and /GS for Microsoft Visual C++. The general

concept behind each implementation of the technique is to prevent the attacker from making

use of a hijacked return address, by validating the stack consistency right before returning from

a routine.

Due to the fact that both user- and kernel-mode modules are written in native languages (such

as C or C++), which are potentially vulnerable to memory corruption flaws, it is reasonable to

apply all available protections mechanisms in both CPU privilege levels. Such an approach can

be observed in the context of the Microsoft Windows operating system, since the Microsoft

C/C++ compiler (also known as cl.exe) is employed to compile both typical user applications

and device drivers. Interestingly enough, thorough research has already been carried out on

how safe Microsoft’s GS cookie implementation is - the results of skape’s work can be found in

[1]. However, the author only focused on the entropy level of stack cookie sources applied in

ring-3, so a majority of the presented techniques are only applicable in the context of Local

Privilege Escalation attacks (i.e. the attacker had to be able to execute code on the victim

machine) against user-mode processes with high privileges (such as system services). This

article aims to present the current protection level provided by GS cookies implemented in the

default and custom Windows device drivers, and discuss some of the possible solutions for

improving the current implementation.

Note: The presented material concerns all of the kernel modules, running on the Windows XP,

Windows Vista and Windows 7 operating systems, except for the core kernel images

(ntoskrnl.exe, ntkrnlpa.exe, ntkrnlmp.exe, ntkrpamp.exe). This is primarily caused by the fact,

that the GS cookie initialization present in the kernel differs from the one found in traditional

drivers, and is therefore out of the scope of this paper.

Also, we tend to use Windows version-directed terminology (e.g. something takes place on

Windows Vista) instead of the DDK/WDK version, due to the fact that most attention was

focused on defeating the protection schemes found in the default Windows drivers. Still, all of

the presented information is confirmed to be valid for the latest versions of the Windows Driver

Kit.

One, particularly interesting thing observed by us is that the Windows XP SP3 kernel image

makes use of the standard GS protection, but does not initialize the nt!__security_cookie

variable, in the first place. Such behavior (i.e. always using the default cookie value) has been

confirmed by reverse engineering the executable image, as well as performing empirical tests

on two independent machines. All of the factors known to the authors seem to confirm that the

stack protection of the Windows XP kernel image is actually a fake, in fact.

~ 3 ~

2. Generating the cookie

Even though the GS Cookie mechanism is available for both user- and kernel-mode code, and

the overall concept is identical, the cookie value generation process itself greatly differs

between user and kernel mode. The generation of the user-mode cookie has been described in

depth in [2] and is out of scope of this paper.

The kernel mode GS cookie is generated at the driver entry point, either in a procedure called

GsDriverEntry, an internal __security_init_cookie procedure, or at the beginning of the

DriverEntry function itself. In order to form the global cookie value, only two entropy sources are

utilized:

● the virtual address of the global cookie variable,

● the nt!KeTickCount value or its part.

Additionally, the cookie is generated once per system session - if the global variable is detected

to be already initialized, it is never filled for the second time. However, three major factors - the

size of the cookie variable, the number of effectively used bits and possible prologue / epilogue

modifications - differ between separate Windows editions and architectures (be it 32- or 64-bit).

We have analyzed the GS cookie generation and verification implementation present in the

standard win32k.sys driver, across different Windows versions and architectures (i.e. x86 and

86-64, excluding the Itanium IA-64). All of the known differences are thoroughly covered in the

following subsections.

2.1. Windows XP / 2003 32-bit

In the implementation used in both Windows XP and Windows 2003, the cookie is a 32-bit

variable with only the bottom 16 bits being effectively used, and the rest of the bits cleared. The

cookie value is generated by combining (using XOR) the lowest portion of the nt!KeTickCount

variable with the virtual address of the cookie variable, right-shifted by 8 bits (see Listing 1). At

the very end, the value is truncated to 16 bits, which we suspect to be a string buffer overflow

mitigation (for example, we believe that the CVE-2009-1126[3] stack-based wcscpy buffer

overflow vulnerability is made non-exploitable, even if the GS cookie value can be correctly

predicted by an attacker).

~ 4 ~

const DWORD DEFAULT_VALUE = 0xBB40;

if(__security_cookie == 0 || __security_cookie == DEFAULT_VALUE)

{

 __security_cookie = ((&__security_cookie) >> 8) ^ KeTickCount.LowPart) & 0xffff;

 if(__security_cookie == 0)

 __security_cookie = DEFAULT_VALUE;

}

__security_cookie_complement = ~(__security_cookie);

Listing 1. Windows XP 32-bit GS cookie generation pseudo-code.

The cookie is stored on the stack using a straightforward assignment in the function's prologue

(see Listing 2).

mov eax, ___security_cookie

mov [ebp+cookie], eax

Listing 2. The prologue of an exemplary GS-protected routine, on Windows XP / 2003.

At the end of the function execution path, a check is made using a call to the

__security_check_cookie function (see Listing 3), which expects the current cookie value in the

ECX register and compares it with the global cookie value. Additionally, the top 16 bits of the

number are tested against zero.

 mov ecx, [ebp+cookie]

 call @__security_check_cookie@4

 leave

 retn 4

 @__security_check_cookie@4 proc near

 cmp ecx, ___security_cookie

 jnz ___report_gsfailure

 test ecx, 0FFFF0000h

 jnz ___report_gsfailure

 retn

 @__security_check_cookie@4 endp

Listing 3. Stack cookie verification, at the end of the GS-protected routine, on Windows XP / 2003.

As one might suppose, the __report_gsfailure function is responsible for halting the system's

execution; this is usually achieved by triggering a Blue Screen of Death, with adequate

bugcheck code.

~ 5 ~

2.2. Windows Vista / 7 / 2008 32-bit

In Windows Vista and later, the cookie generation procedure is similar but not identical, with the

cookie being a full 32-bit variable (see Listing 4). Again, the cookie is generated by combining

the virtual address of the __security_cookie variable with the low part of the nt!KeTickCount

variable, but the shifting and truncating has been removed.

const DWORD DEFAULT_VALUE = 0BB40E64Eh;

if(__security_cookie == 0 || __security_cookie == DEFAULT_VALUE)

{

 __security_cookie = KeTickCount.LowPart ^ (&__security_cookie);

 if(__security_cookie == 0)

 __security_cookie = DEFAULT_VALUE;

}

__security_cookie_complement = ~__security_cookie;

Listing 4. Windows Vista and later 32-bit GS cookie generation pseudo-code.

One relevant modification that should be noted here is the method of storing the cookie on the

stack by the function prologue: the cookie is combined (XOR) with the value of the EBP register

value and then stored on the stack (see Listing 5).

 mov eax, ___security_cookie

 xor eax, ebp

 mov [ebp+cookie], eax

Listing 5. The prologue of an exemplary GS-protected routine, on Windows Vista and later.

Accordingly, the cookie check in the epilogue first XORs the stored cookie with EBP, before

calling the __security_check_cookie procedure (see Listing 6).

 mov ecx, [ebp+cookie]

 xor ecx, ebp

 call @__security_check_cookie@4

 leave

 retn 4

 @__security_check_cookie@4 proc near

 cmp ecx, ___security_cookie

 jnz ___report_gsfailure

 retn

 @__security_check_cookie@4 endp

Listing 6. Stack cookie verification, at the end of the GS-protected routine, on Windows Vista and later.

~ 6 ~

As one can see, since a total of 32 bits are used by the cookie, the second check (referencing

the upper 16 bits) has been removed.

2.3. Windows XP/2003 64-bit and Vista/7/2008 64-bit

The GS Cookie was extended to 64 bits with only 48 bits actually used and the rest cleared. The

generation is similar to the previous case (see Listing 7).

const QWORD DEFAULT_VALUE = 2B992DDFA232h;

if(__security_cookie == 0 || __security_cookie == DEFAULT_VALUE)

{

 __security_cookie = (KeTickCount ^ (&__security_cookie)) & 0xFFFFFFFFFFFF;

 if(__security_cookie == 0)

 __security_cookie = DEFAULT_VALUE;

}

__security_cookie_complement = ~__security_cookie;

Listing 7. The GS cookie generation pseudo-code, on 64-bit Windows platforms.

Similarly to Windows Vista, the cookie is XORed with the stack pointer (RSP) before being

placed on the stack (see Listing 8). The __security_check_cookie procedure not only compares

the cookie value, but also checks if all of the top 16 bits are clear (see Listing 9).

 mov rax, cs:__security_cookie

 xor rax, rsp

 mov [rsp+cookie], rax

Listing 8. The cookie initialization on stack, on 64-bit Windows platforms.

 mov rcx, [rsp+cookie]

 xor rcx, rsp

 call __security_check_cookie

 retn

 __security_check_cookie proc near

 cmp rcx, cs:__security_cookie

 jnz short report_gsfailure

 rol rcx, 10h

 test cx, 0FFFFh

 jnz short report_gsfailure_2

 retn 0

Listing 9. Stack cookie verification, at the end of the GS-protected routine, on 64-bit Windows
platforms.

~ 7 ~

The GS cookie generation method found in Windows XP 64-bit and Windows 2003 64-bit is

generally analogous; the only difference is that the stack address entropy source is not

employed, as opposed to newer versions of the system.

2.4. Summary of the cookie generation

Table 1 summarizes the cookie generation mechanism found across different Windows

versions.

Windows

Version

Cookie

Variable Size

Number of bits

used

Additional

operations

while applying

Total number

of entropy

sources

XP 32-bit and

2003 32-bit

32 16 none 2

Vista 32-bit and

later

32 32 XOR with EBP 3

XP 64-bit and

2003 64-bit

64 48 none 2

Vista 64-bit and

later

64 48 XOR with RSP 3

Table 1. Summary of the GS cookie protection scheme factors, implemented within various

Windows editions.

3. Attacking GS

This section provides detailed information on how each separate source of the kernel GS cookie

entropy can be predicted by a potential attacker. Two out of the three entropy sources are

considered trivial to calculate, and can be dealt with using generic, straight-forward techniques.

Consequently, we have put a lot of effort in developing methods which can be used to handle

the third, and last factor; the system tick count. In this particular case, several attack vectors

have been invented; relying on the specific drivers’ characteristics and behavior. Accordingly,

three separate categories of the Windows device drivers are considered in this document:

~ 8 ~

1. Boot / Manual device drivers

All executable modules which are loaded into kernel space during the OS boot process

are referred to as boot drivers. On the other hand, the remaining drivers, manually

loaded by either typical user-mode applications or the system itself (upon certain events,

such as inserting a flash drive into the port), are called manual load drivers, since their

load time is not a determined, relative to the system start-up time, value.

2. Public / Non-public device drivers

A great number of images present inside the kernel memory areas provide a convenient

communication channel to user-mode client applications (e.g. programs responsible for

displaying a graphical user interface, such as antivirus software). In order to do so, these

modules are obliged to create a named device resource (using the IoCreateDevice

kernel API), and make it available to certain users or user groups, by specifying

adequate access ACL settings. After performing this operation, the drivers start

dispatching signals sent to the public device, and in that sense they can be considered

public (or visible) modules. The remaining group of executable images, including low-

level hardware management drivers and mini-filters, is referred to as non-public, or

private drivers.

3. Default / Custom device drivers

The default term describes drivers that are present on every installation of the Microsoft

Windows operating system, and are loaded into kernel-space by default. One example

of such a driver is the graphical management module - win32k.sys. Other drivers, most

likely installed by third-party applications, are referred to using the phrase custom

drivers.

As it turns out, a completely different set of techniques and methods can be applied, depending

on the target driver characteristics; when, how, and if public are the key words here. All of the

presented considerations can be successfully applied, provided there is local access to the

victim system.

3.1 Calculating the __security_cookie address

The first entropy source to handle is the virtual address of the global __security_cookie value,

placed somewhere inside the driver image in consideration. As mentioned before, the global

stack canary value is the result of XOR’ing two factors (the tick count and a virtual address

within the executable image) in the following manner:

 mov edx, ds:__imp__KeTickCount

 mov eax, offset ___security_cookie

 shr eax, 8

 xor eax, [edx]

Listing 10. GS cookie initialization disassembly from a Windows XP SP3 (32-bit) executable.

~ 9 ~

The question is how a potential attacker, logged onto an account with the lowest possible

privileges, would be able to know the virtual address of a global variable within one of the kernel

modules. As it turns out, it is possible for any user to obtain a list of structures - describing all of

the active kernel modules using the native NtQuerySystemInformation API[4], together with the

SystemModuleInformation parameter. On success, the caller application receives an array of

the SYSTEM_MODULE_INFORMATION_ENTRY structures (presented on Listing 11), each

associated with a separate device driver (including the original kernel image - ntoskrnl.exe - or

its equivalent).

typedef struct _SYSTEM_MODULE_INFORMATION_ENTRY {

 ULONG Unknown1;

 ULONG Unknown2;

 PVOID Base;

 ULONG Size;

 ULONG Flags;

 USHORT Index;

 USHORT NameLength;

 USHORT LoadCount;

 USHORT PathLength;

 CHAR ImageName[256];

} SYSTEM_MODULE_INFORMATION_ENTRY, *PSYSTEM_MODULE_INFORMATION_ENTRY;

typedef struct _SYSTEM_MODULE_INFORMATION {

 ULONG Count;

 SYSTEM_MODULE_INFORMATION_ENTRY Module[1];

} SYSTEM_MODULE_INFORMATION, *PSYSTEM_MODULE_INFORMATION;

Listing 11. The SYSTEM_MODULE_INFORMATION_ENTRY structure definition.

As can be seen, the structure contains every piece of information, that an attacker could

possibly need: the full image path and its file name, as well as the image base and image size,

respectively called Base and Size. Given this information, the only missing part of our

__security_cookie address puzzle is the global variable offset, relative to the virtual address of

the module beginning. This, however, should not pose a serious problem, as this last piece of

information can be determined in numerous ways.

First of all the attacker (or a malicious program) is always aware of what driver is to be

exploited. Furthermore, the exact driver image version isn’t usually kept secret, either. Given the

above, one should be able to access a local copy of the .sys file, and manually check the

desired offset value. In case of multiple versions of a single module being targeted, the offsets

could be simply hard-coded into the exploit, thus avoiding the need to request additional

information from the operating system.

Secondly, it is often possible to dynamically download the symbols file for a given executable

image, provided that the driver under attack is a default one (such as win32k.sys or afd.sys),

and the machine has a working internet connection set up. Given a .pdb symbols file, it is easy

to reliably extract the required __security_cookie -related information.

~ 10 ~

Last, but not least, one can make use of the vulnerable module’s assembly code itself. In most

cases, the stack canary initialization takes place right inside the driver’s entry point

(GsDriverEntry), and has a very regular form, presented on Listing 12.

; __stdcall GsDriverEntry(x, x)

 public _GsDriverEntry@8

_GsDriverEntry@8 proc near

 mov edi, edi

 push ebp

 mov ebp, esp

 mov eax, ___security_cookie

(...)

Listing 12. A simple reference to the __security_cookie address, inside a module entry routine.

Apparently, the first reference to the desired address can be found right after a standard five

byte long function prologue. One can take advantage of the observation, by obtaining the

imm32 instruction operand, thus automatically receiving the virtual address of the

__security_cookie global symbol, relative to the original image base, stored in the PE file

headers.

As shown above, the first entropy source can be calculated with a 100% success rate, with no

actual rights in the system.

3.2 Calculating the Stack Frame Pointer (EBP register) value

The second source of entropy, used to form the stack canary on Windows Vista and 7, is the

EBP / ESP (and RBP/ RSP, accordingly) register content. One might suppose that the value is

hidden from any user-mode application, so that the attacker is unable to calculate, or obtain the

address of a kernel stack. Fortunately for us, however, it turns out that the Windows kernel does

not restrict access to such information to users with any specific rights; the

NtQuerySystemInformation routine proves to be extremely useful, once again.

This time, our interest is focused around the SystemExtendedProcessInformation information

class - thanks to this functionality, any process running on the machine can obtain complete

information regarding every active process and thread in the system. To be more precise, the

native API output is contained inside a list of three structures, presented in Listing 13.

~ 11 ~

typedef struct _SYSTEM_THREAD_INFORMATION

{

 LARGE_INTEGER KernelTime;

 LARGE_INTEGER UserTime;

 LARGE_INTEGER CreateTime;

 ULONG WaitTime;

 PVOID StartAddress;

 CLIENT_ID ClientId;

 LONG Priority;

 LONG BasePriority;

 ULONG ContextSwitches;

 ULONG ThreadState;

 ULONG WaitReason;

} SYSTEM_THREAD_INFORMATION, *PSYSTEM_THREAD_INFORMATION;

typedef struct _SYSTEM_EXTENDED_THREAD_INFORMATION

{

 SYSTEM_THREAD_INFORMATION ThreadInfo;

 PVOID StackBase;

 PVOID StackLimit;

 PVOID Win32StartAddress;

 PVOID TebAddress;

 ULONG Reserved1;

 ULONG Reserved2;

 ULONG Reserved3;

} SYSTEM_EXTENDED_THREAD_INFORMATION, *PSYSTEM_EXTENDED_THREAD_INFORMATION;

typedef struct _SYSTEM_PROCESS_INFORMATION

{

 ULONG NextEntryOffset;

 ULONG NumberOfThreads;

 LARGE_INTEGER SpareLi1;

 LARGE_INTEGER SpareLi2;

 LARGE_INTEGER SpareLi3;

 LARGE_INTEGER CreateTime;

 LARGE_INTEGER UserTime;

 LARGE_INTEGER KernelTime;

 UNICODE_STRING ImageName;

 KPRIORITY BasePriority;

 ULONG UniqueProcessId;

 ULONG InheritedFromUniqueProcessId;

 ULONG HandleCount;

 ULONG SessionId;

 PVOID PageDirectoryBase;

 VM_COUNTERS VirtualMemoryCounters;

 SIZE_T PrivatePageCount;

 IO_COUNTERS IoCounters;

 SYSTEM_EXTENDED_THREAD_INFORMATION Threads[1];

} SYSTEM_PROCESS_INFORMATION, *PSYSTEM_PROCESS_INFORMATION;

Listing 13. The output structures, used to return information upon issuing the

SystemExtendedProcessInformation information class request.

~ 12 ~

Two fields, which are by far the most interesting for an attacker, are marked with a red color

(and bold). The importance of these values stems from the fact that they describe the top and

bottom addresses of the kernel-mode stack, assigned to a given thread. Due to the fact that the

API provides information about all of the threads, it is easy to find the stack information of the

current execution unit.

Considering the fact that the EBP / ESP address is shifted by a constant offset, relative to the

thread’s stack base when crafting the stack canary, the attacker can easily calculate the stack-

frame factor of the cookie, by just obtaining the current thread’s stack base and subtracting a

hard-coded value from the top of the stack. One should keep in mind, however, that the

vulnerability should be triggered from within the same thread which was used to calculate the

stack address value; otherwise, a different stack frame pointer would be used, and the entire

attack would end in failure.

3.3. Calculating the CPU Tick Count

As shown, both previous factors used to form the GS cookie in its final form provide hardly any

protection against successful exploitation; the correct value can be simply obtained from the

system, hence we can be sure that the retrieved information is 100% accurate. The last cookie-

generation source is slightly more tricky to calculate, because it is based on a truly

unpredictable factor (time), and cannot be directly read from the operating system. Given the

above conclusions, the authors have came up with three different approaches, which can be

employed in practical attacks, all of which are applicable under a certain set of conditions.

Although this explanation doesn’t sound like a complete break of GS, it turns out that a great

majority of device drivers installed on regular computers falls into at least one of the presented

categories.

One question that should be answered before considering possible attack vectors is: what is the

actual time period between a system’s clock interrupts? Since the authors were not aware of

any precise answer to this question, a special “social campaign”
1
 was started, aiming at

collecting experimental results from numerous hardware and system platforms, as well as

virtualized environments. In one week, the authors managed to collect around 280 submissions,

from pretty much every possible Windows edition, and both Intel and AMD processor vendors

(interestingly, some of the samples indicated that the test program was also run under Wine.). A

brief summary of the survey results is presented in Table 2.

1
 The visitors of the http://j00ru.vexillium.org/ticks/ website were requested to post the output of

a simple console application returning the GetSystemTimeAdjustment function output.

http://www.google.com/url?q=http%3A%2F%2Fj00ru.vexillium.org%2Fticks%2F&sa=D&sntz=1&usg=AFQjCNGZGpvHOR7eX7T-dmXrbOYqAH7uDA
http://www.google.com/url?q=http%3A%2F%2Fj00ru.vexillium.org%2Fticks%2F&sa=D&sntz=1&usg=AFQjCNGZGpvHOR7eX7T-dmXrbOYqAH7uDA
http://www.google.com/url?q=http%3A%2F%2Fj00ru.vexillium.org%2Fticks%2F&sa=D&sntz=1&usg=AFQjCNGZGpvHOR7eX7T-dmXrbOYqAH7uDA
http://www.google.com/url?q=http%3A%2F%2Fj00ru.vexillium.org%2Fticks%2F&sa=D&sntz=1&usg=AFQjCNGZGpvHOR7eX7T-dmXrbOYqAH7uDA
http://www.google.com/url?q=http%3A%2F%2Fj00ru.vexillium.org%2Fticks%2F&sa=D&sntz=1&usg=AFQjCNGZGpvHOR7eX7T-dmXrbOYqAH7uDA
http://www.google.com/url?q=http%3A%2F%2Fj00ru.vexillium.org%2Fticks%2F&sa=D&sntz=1&usg=AFQjCNGZGpvHOR7eX7T-dmXrbOYqAH7uDA
http://www.google.com/url?q=http%3A%2F%2Fj00ru.vexillium.org%2Fticks%2F&sa=D&sntz=1&usg=AFQjCNGZGpvHOR7eX7T-dmXrbOYqAH7uDA
http://www.google.com/url?q=http%3A%2F%2Fj00ru.vexillium.org%2Fticks%2F&sa=D&sntz=1&usg=AFQjCNGZGpvHOR7eX7T-dmXrbOYqAH7uDA
http://www.google.com/url?q=http%3A%2F%2Fj00ru.vexillium.org%2Fticks%2F&sa=D&sntz=1&usg=AFQjCNGZGpvHOR7eX7T-dmXrbOYqAH7uDA
http://www.google.com/url?q=http%3A%2F%2Fj00ru.vexillium.org%2Fticks%2F&sa=D&sntz=1&usg=AFQjCNGZGpvHOR7eX7T-dmXrbOYqAH7uDA
http://www.google.com/url?q=http%3A%2F%2Fj00ru.vexillium.org%2Fticks%2F&sa=D&sntz=1&usg=AFQjCNGZGpvHOR7eX7T-dmXrbOYqAH7uDA
http://www.google.com/url?q=http%3A%2F%2Fj00ru.vexillium.org%2Fticks%2F&sa=D&sntz=1&usg=AFQjCNGZGpvHOR7eX7T-dmXrbOYqAH7uDA

~ 13 ~

Tick interval Occurrence # Occurrence rate Comment

100000 4 1,54% Wine output

100144 28 10,84% Virtual machines’

output (most often

VirtualBox)

149952 1 0,38% Unknown result

156001 107 41,31% Regular PC value

156250 119 45,94% Regular PC value

Table 2. Experimental results of the GetSystemTimeAdjustment API function; based on a total

of 259 valid samples.

As can be seen, there are only two different values, which can usually be observed on typical,

desktop machines - 156001 and 156250. Given the fact that the numbers represent the interval

between periodic time adjustments in 100-nanosecond units, it turns out that the magic 156250

number actually stands for exactly of a second. Apparently, the other frequent duration

cannot be translated into such a nice fraction. However, in order to simplify our considerations,

we can just approximate these two values as one; a difference of 24900 nanoseconds should

not make a relevant difference for an attacker.

All in all, the main observation to be made here is that a duration of s provides a very low

entropy level especially if additional factors, such as a deterministic boot process, or the user’s

ability to query various performance counters, are taken into consideration. When one realizes

how weak is that, he will easily grasp the cookie-calculation techniques, presented further in this

section. All of the presented methods do nothing but try to estimate the loading time of a device

driver, based on all of the available information, that the operating system can provide to a

restricted user.

Knowing the basics of the cookie generation weakness, let’s figure out what are the possible

ways of subverting the flawed implementation.

3.3.1. Boot / manual load drivers

In general, a total of the Windows device drivers can be divided into several groups, based

solely on their loading time; a list of the possible service types follows:

~ 14 ~

● Boot drivers

● System drivers

● Automatic drivers

● Manual-load drivers

● Disabled drivers

Due to the fact that (almost) every legitimate driver must be registered to the Service Control

Manager mechanism before being allowed to execute, the “load time” setting is explicitly chosen

by the registrar, when calling the CreateService API function. This specific characteristic of any

device driver can also be investigated manually, by checking the

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\NAME\Start registry value.

What sets the modules placed within the first three groups apart is how early in the system start-

up process the driver is loaded into kernel space. As it turns out, some drivers (i.e. low-level

hardware management drivers) are loaded as early as the Windows kernel image itself, while

others are given a chance to execute further, during the system boot.

One, particularly interesting observation for a potential attacker is that the entire Windows NT

boot process is extremely deterministic - given a list of the installed device drivers (or even

without it) and hardware specification (such as the CPU frequency), one should be able to

predict the amount of time required to successfully launch the operating system. This is

primarily caused by the fact that the only factors which might potentially affect the booting time

are random hardware delays (e.g. disk drive and random access memory lags) or filesystem-

related issues, such as varying fragmentation level. Even though these factors exist, it is very

unlikely that they can result in a relevant level of tick count unpredictability, given the 1/64s

duration.

Having made these observations, one could suppose that the effective entropy level of the

kernel modules which belong to one of the first three groups (drivers that are loaded before a

user logs in) must be extremely low. In order to confirm (or rebut) the thesis, the authors

generated a set of experimental results, presenting the cookie value decomposition of

win32k.sys (standard Windows graphics driver, otherwise known as the ring-0 part of Windows

Subsystem), and wanarp.sys (another default device driver, loaded at boot-time). The tests

were performed on both a regular computer and a virtual machine; the summarized results are

presented on Charts 1 and 2. You can also find the complete study of the experimental results

in Chapter 4 (Table 1, Charts 7, 8, 9, 10).

~ 15 ~

Chart 1. Per-bit entropy level of the GS cookie value for win32k.sys on a regular PC (1.0 - fully

predictable, 0.5 - equal bit probability).

Chart 2. The percentage probability of hitting the correct GS cookie for the win32k.sys and
wanarp.sys modules, on both a regular PC and a virtual machine.

As the above charts show, a chance of a successful GS cookie guess is effectively reduced

from a potentially feasible probability of

 (Windows XP and 2003) or

 (Windows

Vista and later) - provided that all bits of the cookie all truly random - to around

, due to very

weak entropy sources of the canary value generation. What should be noted, is that the device

drivers investigated in this subsection are being loaded relatively late in the boot process; e.g.

~ 16 ~

win32k.sys is launched by the Session Manager (smss.exe) process which, in turn, is created

after loading all of the Boot and System kernel modules. Therefore, the chances of successful

exploitation of a driver executed earlier become even greater.

Although the above statistics seem scary, one should keep in mind that calculating the cookie

value range for a driver (such as from Chart 1) is not a trivial task unless the

attacker has got some very precise information about the machine and operating system (i.e.

CPU and chipset information, a list and description of the registered device drivers, and so on).

In order to carry out a successful attack in practice, it is supposed that the best solution for one

would be to first get himself a machine with specs equal to the victim’s computer, then set up a

very similar software environment, and finally perform experimental tests, examining the cookie

value spread.

3.3.2. Process-relative / absolute loading-time drivers

In this section, device drivers belonging to the Manual loading group are considered. What

should be made clear before going further into the analysis, is the answer to the following

question - what does the manual term mean, in the first place? Obviously, it is not the user’s

duty to manually load the essential device drivers. Instead, certain drivers are programatically

launched by the associated user-mode applications; one example of such behavior might be

anti-rootkit software of some kind - the user decides to perform a full system scan, and runs an

AntiRootkit.exe program, which in turn registers AntiRootkit.SYS to SCM, and starts the service.

Interestingly, even the well-known wink32.sys module can be considered process-relative in

terms of its loading time, since it is directly loaded by the SMSS.EXE application, by using the

NtSetSystemInformation native call, together with the SystemLoadAndCallImage (38) argument.

In this scenario, the attacker is unable to make use of the fact presented in the previous chapter

- the absolute (i.e. relative to system boot time) load time cannot be easily calculated, as it is

often the user himself, who decides about when a specific service should be launched (directly,

or indirectly - through a program functionality, which requires a kernel module to execute).

However, one nice thing about the Windows NT kernel is that it is more than willing to share

various types of information regarding the current system state, with users with no special

privileges (e.g. a typical Guest account). And so, if one decides to make the following call:

NtQuerySystemInformation(SystemProcessInformation , …);

or

NtQuerySystemInformation(SystemExtendedProcessInformation, …);

he will receive a complete description of each process and thread currently running in the

system; the technique has already been used to retrieve the kernel stack base and limit of a

given thread. This time, we are going to obtain the creation time of the process, associated with

the ring-0 module under attack - the information can be easily extracted from the

PROCESS_INFORMATION.CreateTime structure:

~ 17 ~

(…)

 LARGE_INTEGER SpareLi2;

 LARGE_INTEGER SpareLi3;

 LARGE_INTEGER CreateTime;

 LARGE_INTEGER UserTime;

 LARGE_INTEGER KernelTime;

(…)

The field (currently declared to hold 64-bit integers) represents the absolute date of the process

creation, in a standard format (100 nanosecond units, since 1st January of 1601). The question

is - how is a potential attacker able to make use of this kind of information? Let’s take a look at

Image 1:

Image 1. The victim machine execution timeline.

As presented, the attacker has a chance to execute his code at some point in time, after the

host application was launched and stack canary initialized.

The known factors are:

1. The current tick count, at the time of executing the Attacker’s Application,

2. The absolute creation time of the Host Application and Attacker’s Application.

Thanks to the above information, we can easily calculate the system tick count, at the time of

the Host Process creation:

At the time of writing this paper, the authors are unaware of any documented API function,

which would make it possible to read the current tick count. Instead, one can obtain the number

of milliseconds that have elapsed since the system start, using a function with somewhat

misleading name - GetTickCount. One idea of solving the problem might be to calculate the

actual tick count, , based on the output of GetTickCount and GetSystemTimeAdjustment:

~ 18 ~

Unfortunately, the resolution of the GetTickCount output value is insufficiently low (one-

milisecond units), thus the result might turn out to be inaccurate. A more precise method of

obtaining the tick count would be to directly refer to the original source - in this case, to the

KUSER_SHARED_DATA[5] structure, mapped under a constant virtual address of 0x7ffe0000

(or 0xfffe0000 in kernel-mode). This special memory area is common to all processes running

in the system, and contains bits of essential information regarding the current system session,

such as:

1. Numerous counters and timers,

2. System version,

3. CPUID (Processor Features),

4. Number of physical pages,

5. System-wide pointers, e.g. ntdll!KiFastSystemCall or ntdll!KiFastSystemCallRet.

Fortunately, one of the structure fields contains precisely the information we want to obtain:

kd> dt _KUSER_SHARED_DATA

nt!_KUSER_SHARED_DATA

 +0x000 TickCountLow : Uint4B

 +0x004 TickCountMultiplier : Uint4B

 +0x008 InterruptTime : _KSYSTEM_TIME

 +0x014 SystemTime : _KSYSTEM_TIME

 +0x020 TimeZoneBias : _KSYSTEM_TIME

 (...)

 +0x304 SystemCallReturn : Uint4B

 +0x308 SystemCallPad : [3] Uint8B

 +0x320 TickCount : _KSYSTEM_TIME

 +0x320 TickCountQuad : Uint8B

 +0x330 Cookie : Uint4B

Listing 14. Parts of an internal _KUSER_SHARED_DATA structure, containing the current system tick
count.

The first marked DWORD - TickCountLow - is supported on the Windows XP platform, whereas

newer systems (Vista, 7) consider the field deprecated, and instead make use of a 64-bit

TickCount structure. Listing 15 presents an XP-compatible function, which should be sufficient

for a majority of implementations.

~ 19 ~

DWORD GetRealTickCount()

{

 PDWORD lpTicks = (PDWORD)0x7ffe0000;

 return (*lpTicks);

}

Listing 15. A simple implementation of a function, responsible for retrieving the current system tick
count.

Knowing that the __security_cookie variable of the driver in consideration is initialized, based on

the total number of ticks that elapsed since system startup, and having the number of ticks that

passed between system start-up and the creation of a user-mode client, the x variable (the time

between Host App’s creation and stack canary initialization) becomes the only unknown part of

our equation.

Due to the fact that the unknown period of time is usually very short (especially if loading a

kernel module is the first objective achieved by the program) and deterministic, it is claimed that

the prediction of the x variable should not pose a serious problem for a determined attacker. As

mentioned before, win32k.sys can be also considered in terms of process creation time

dependency, as it is always loaded in a relatively early stage of the smss.exe execution path.

Therefore, the authors have performed special tests, aiming to determine the practical x variable

values on both a regular PC and a virtual machine. Summarized results of the experiments are

presented in Charts 3 and 4. Complete results related to process-relative ticks can be found in

Chapter 5 (Table 4, Charts 11, 12).

Chart 3. Per-bit entropy level of the unknown x variable, using the “process-relative estimation” technique

for win32k.sys on a regular PC (1,0 - fully predictable, 0,5 - random).

~ 20 ~

What should be observed is that the general prediction accuracy has dramatically increased -

from 7,19% to 15,28% (over twice) on a virtual machine, and from 3,69% to 41,84% (!) on a

typical desktop computer. One of the reasons, why guessing the tick count on a virtual machine

becomes less reliable then a real machine, is the higher tick frequency (156250 units on a PC /

100144 units on a VM).

As it turns out, however, there are ways to estimate the tick count even more precisely - by

making use of the Windows objects.

Chart 4. The probability of hitting the correct GS cookie for the win32k.sys

module, on both a regular PC and a virtual machine.

3.3.3. Public / non-public drivers

Amongst a variety of other functionalities, Windows makes it possible for any user to receive

detailed information about an object (i.e. a resource) previously opened by the requesting

thread. This simple goal can be achieved by taking advantage of the NtQueryObject function,

together with the ObjectBasicInformation parameter. Upon issuing a correct call to the native

routine, an OBJECT_BASIC_INFORMATION structure, presented on Listing 16, is returned to

the process.

~ 21 ~

Concluding from the structure declaration, one might suppose that it is possible to retrieve the

creation time of any system resource, provided that the user in consideration (the attacker) has

the rights to such a previously opened resource. Unfortunately, this is not entirely true.

In order to figure out how exactly the CreateTime field is managed by the kernel itself, one

should take a look at the actual implementation of the nt!NtQueryObject routine. Upon

disassembling the ntoskrnl.exe image and finding the desired function address, one should

observe the assembly code snippet presented on Listing 17.

typedef struct _OBJECT_BASIC_INFORMATION {

ULONG Attributes;

ACCESS_MASK DesiredAccess;

ULONG HandleCount;

ULONG ReferenceCount;

ULONG PagedPoolUsage;

ULONG NonPagedPoolUsage;

ULONG Reserved[3];

ULONG NameInformationLength;

ULONG TypeInformationLength;

ULONG SecurityDescriptorLength;

LARGE_INTEGER CreationTime;

} OBJECT_BASIC_INFORMATION, *POBJECT_BASIC_INFORMATION;

Listing 16. The OBJECT_BASIC_INFORMATION structure defitinion.

 cmp ebx, _ObpSymbolicLinkObjectType
 jnz short loc_52020A

 mov eax, [ebp+Object.CreationTime]

 mov ecx, [eax+LowPart]

 mov [ebp+ObjectBasicInfo.CreationTime.LowPart], ecx

 mov eax, [eax+HighPart]

 mov [ebp+ObjectBasicInfo.CreationTime.HighPart], eax

 jmp short loc_520214

loc_52020A:

 xor eax, eax

 lea edi, [ebp+ObjectBasicinfo.CreationTime.LowPart]

 stosd

 stosd

Listing 17. Part of the nt!NtQueryObject system call handler, responsible for filling the output
CreationTime structure field.

The binary code can be easily translated to a high-level language (Listing 18).

~ 22 ~

if (ObjectType == ObpSymbolicLinkObjectType)

{

 ObjectBasicInfo.CreationTime = Object->CreationTime;

}

else

{

 RtlZeroMemory(&ObjectBasicInfo.CreationTime,sizeof(LARGE_INTEGER);

}

Listing 18. High-level language representation of the CreationTime structure initialization.

Apparently, the only case, when the CreationTime value is correctly managed, is when the

request is made for a symbolic link object; otherwise, the output LARGE_INTEGER structure is

simply zero-ed out. The above behaviour has been confirmed both empirically and by reverse

code engineering not only on Windows XP, but also Windows Vista and 7 kernel images. The

question is - how this (seemingly limited) functionality could be of much use to a potential

attacker?

Due to the fact that a significant number of device drivers aims to communicate with user-mode

applications, they often create named device resources in the system - such a device can be

subsequently opened by one or more ring-3 programs, by using the typical CreateFile API, and

then freely exchanged information with, by using either the ReadFile / WriteFile pair

(MJ_READ_IRP and MJ_WRITE_IRP), or a single IoControlDevice (MJ_CONTROL_IRP)

function. In order to make the naming scheme more legible, the drivers often decide to create a

symbolic link between the “\\.\Driver” symbol, and a previously created “\Devices\Driver” name.

Fortunately, this operation is often performed directly from within the DriverEntry routine (during

the driver initialization), which is just a few instructions away from crafting the

__security_cookie value.

Depending on the DriverEntry - or other initialization - function body, the creation time of a

symbolic link object might appear to be the most accurate one, as it lies in the closest tick-

distance from the moment of filling the global canary variable. Furthermore, it should be noted

that the technique is not only restricted to symbolic link objects created by the ring-0 module -

any other symlink that is created with a constant time offset relative to the cookie initialization,

can be made use of.

Adequate tests have been performed during our research, using the “symlink estimation”

method; summarized results of the experiments are presented on Chart 5 and Chart 6 (as

usual, a more descriptive information about the tests can be found in Table 15 and Charts 13,

14, 15, 16). The authors decided to stick to the win32k.sys module, as it is a usual attack target,

and a very representative example of how the discussed technique can work in practise. In

order to achieve the best effect, the tick count difference between win32k!__security__cookie

initialization and the \BaseNamedObjects\Session symlink creation (performed by the host,

smss.exe) was measured. This difference is represented by the unknown x variable; i.e. the

~ 23 ~

time between a known event (calling NtCreateSymbolicLinkObject[6]) and an unknown event -

loading a device driver.

Chart 5. Per-bit entropy level of the unknown x variable, using the “symlink estimation” technique for

win32k.sys on a regular PC (1,0 - fully predictable, 0,5 - random).

Chart 6. The probability of hitting the correct GS cookie for the win32k.sys and wanarp.sys modules, on

both a regular PC and a virtual machine (using the “symlink estimation” technique).

As outlined, the probability of performing a successful attack against the GS cookie has risen to

almost . Also, the general spread has dramatically decreased, as the x variable now ranges

~ 24 ~

from 5 to 8 (the 70 and 71 values are supposed to be an observational error, as their share

does not exceed 1%) . However, one should keep in mind that the results provided by authors

are based on a specific behavior of hardware and software platform being tested; hence, other

computers are going to produce different outputs, giving a smaller or higher prediction accuracy.

3.3.4. Other techniques

All of the ideas presented in this chapter aim to guess the time that elapses between two,

certain occurrences taking place on the machine, in order to estimate the number of ticks

between the system startup and cookie initialization. Fortunately, significant parts of the

unknown period may be reliably calculated, based on the information provided by the operating

system, so that the unknown part can be estimated more precisely. We believe that other,

potentially more accurate techniques exist, which rely on other events related to the driver

loading. However, the techniques discussed in this paper already provide a decent degree of

reliability.

Two out of the three techniques described here require the attacker to take advantage of certain

Windows system calls. As a consequence, these techniques are only applicable in the context

of Local Elevation of Privileges Attacks, i.e. the attacker must have local access to the target

system. However, the fact that the tick count resolution is critically low remains, so it is still

possible to remotely guess the cookie value with a probability of up to 5% (or more), basing

solely on the cpu specs and general system information (which is often known, when a special

machine-dedicated attack is being planned and / or performed).

4. Experimental results

In this chapter, the results of practical tests, performed on the authors’ machines are discussed

in detail.

4.1. Testing platform

The following subsections refer to experimental results, obtained by performing numerous tests

on the authors’ machines. All of the tests were carried out on one regular PC, with the following

specs:

● Intel Core 2 Quad CPU Q8200 @ 2.33 GHz

● Microsoft Windows XP Professional SP3 (32-bit)

and a single virtual machine:

● AMD Phenom II X4 810 @ 2,59 GHz (host)

● Microsoft Windows XP Professional SP3 (32-bit)

● Sun VirtualBox 3.1.8 r61349

~ 25 ~

4.2. Absolute loading time of a boot-time kernel module

In order to measure the actual tick count that is used to generate the final form of the

__security_cookie value, several types of experiments were performed, targeting two default

Windows drivers - win32k.sys and wanarp.sys, and two different environments (regular PC and

virtual machine).

Module win32k.sys (PC) win32k.sys (VM) wanarp.sys (PC) wanarp.sys (VM)

Lowest tick value 857 428 938 417

Highest tick value 1028 466 974 570

Spread 171 38 36 153

Most frequent

value

960 436 950 453

Top value

occurrence #

48 129 225 71

Total samples 1300 1793 2016 1635

Success rate 3,69% 7,19% 11,16% 4,34%

Table 3. A summary of the absolute loading time of two default Windows device drivers, on different
hardware platforms.

~ 26 ~

Chart 7. Absolute loading time of win32k.sys, regular PC.

Chart 8. Absolute loading time of win32k.sys, virtual machine.

~ 27 ~

Chart 9. Absolute loading time of wanarp.sys, regular PC.

Chart 10. Absolute loading time of wanarp.sys, virtual machine.

~ 28 ~

4.3. Process-relative loading time of a manual-load driver

Module win32k.sys (PC) win32k.sys (VM)

Lowest offset value 91 47

Highest offset value 170 68

Spread 79 21

Most frequent value 105 53

Top value occurrence # 544 274

Total samples 1300 1793

Success rate 41,84% 15,28%

Table 4. A summary of the process-relative offsets, observed in win32k.sys, on a regular PC and a virtual
machine.

Chart 11. Process-relative loading time of win32k.sys, regular PC.

~ 29 ~

Chart 12. Process-relative loading time of win32k.sys, virtual machine.

4.4. Symlink-relative loading time of a public driver

Module win32k.sys (PC) win32k.sys (VM) wanarp.sys (PC) wanarp.sys (VM)

Lowest ticks value 5 23 6 19

Highest ticks

value

71 39 71 37

Spread 66 19 65 18

Most frequent

value

6 30 7 29

Top value

occurrences

605 394 1162 221

Total samples

count

1300 1793 2016 1635

Success rate 46,53% 21,97% 57,63% 13,51%

Table 5. A summary of the symlink offsets, observed in win32k.sys and wanarp.sys, on a regular PC and

a virtual machine.

~ 30 ~

Chart 13. Symlink-relative loading time of win32k.sys, regular PC.

Chart 14. Symlink-relative loading time of win32k.sys, virtual machine.

~ 31 ~

Chart 15. Symlink-relative loading time of wanarp.sys, regular PC.

Chart 16. Symlink-relative loading time of wanarp.sys, virtual machine.

~ 32 ~

5. Improvements

As some of the experimental results presented in Chapter 4 indicate, the current implementation

of the kernel GS cookies provides - depending on the particular attack circumstances - from one

to four bits of true randomness. The authors believe that the actual protection level bar could be

raised by extending the number of high-entropy bits to 16 (for Windows XP and 2003), 32 (for

Windows Vista, 2008 and 7) or 48 (x86-64 platforms, in general). The following section outlines

some of the potential solutions, addressing the cookie weaknesses presented in the paper.

● When generating the cookie value, make use of a system-wide entropy container. Such

a container could be implemented using any named object (resource), such as a named

device (e.g. \\.\Random), an emulated registry key (HKLM\System\Random), or any

other type of object that the developers find reasonable. The executable image

implementing the container would be responsible for collecting truly random information

from the surrounding environment (certain users’ actions, hardware lags, etc), and would

obviously have to be loaded very early during the system boot-up process.

● Make use of higher-resolution timers, which are present in the system. The exact timers

within our interest would include the Performance Counter

(NtQueryPerformanceCounter[7]), or Time Stamp Counter. The first timer is being

actively used in the user-mode GS protection, and is currently proved to provide about

17 bits of true entropy (according to [2]). However, one should keep in mind not to make

use of any system mechanisms, which might indirectly rely on the system ticks’

information (such as the GetTickCount Windows API), since no additional entropy would

be added to the GS cookie; instead, only the numerical values of the stack canary would

change.

● Take advantage of hardware-assisted RNGs or PRNGs.

● Seed the __security_cookie value with a more unpredictable value at the time of placing

it on the stack. Instead of using the stack pointer, the system could employ a value,

which simply cannot be known by a user-mode application (e.g. a kernel-mode pointer,

such as the current ethread virtual address). Again, one problem related to the concept

is that the positioning of driver-, thread- and process-related information is very

deterministic, in the context of images loaded early during the system startup.

● Send random data requests over the local network / internet, previously installing a

separate, dedicated machine, running for solely one purpose - supplying high-entropy

numbers to other machines in the network. This might, in turn, have a relevant impact on

the driver’s loading efficiency, and would be prone to reliability problems related to the

machine’s network.

● Continuously modify the __security_cookie value at system run-time, between pseudo-

random time intervals, based on the current machine state. By doing so, an attacker

~ 33 ~

would have to know the entire system / machine execution path, which (most likely) he

doesn’t. Such a solution could be implemented in a great variety of ways; e.g. by using

the rdtsc instruction / performance counter as a pseudo-rand time interval.

In order to avoid potential crashes in certain situations, when the __security_cookie

global changes between function’s beginning and end, the correct value of the canary

would have to be saved locally (e.g. on the stack on a lower address than all the local

variables, or better, in a separate thread-specific area), on a per function-call basis,

which may introduce further problems.

Although the authors are aware of the fact that some of the solutions might be prone to certain

weaknesses under specific conditions, each provides a considerably higher protection level

compared to the current number of random bits found in the GS cookie (approximated as 1 to

4).

Furthermore, the authors believe that a cookie containing two zero-bytes can render attacks

against vulnerabilities involving overflowing a buffer in a zero-terminated string copy operation

(e.g. using wcscpy) unexploitable using the standard return-address overwrite methods. Such

bytes are present in the Windows XP and 2003 32-bit and all the 64-bit versions of Windows

cookies, however, the zero-bytes were removed in 32-bit Vista and newer 32-bit Windows

releases. In such case resizing the cookie variable from 32 to 64 bits might be worth doing.

6. Future work

Although a considerable amount of work has been already performed by the authors,

accomplishing a decent level of efficacy, there are still numerous fields, which might be

potentially improved, or should be further investigated. The most important of these issues are

listed below:

● Searching for other (more accurate) points of reference (in the form of events, which

have a known time of occurrence). For example, none of the techniques outlined in this

paper can be applied to attack a device driver which doesn’t provide a public interface to

user-mode applications and is loaded dynamically by a ring-3 process upon a certain

external event by a boot-time process (such as a user-mode service).

● Effectively predicting the security cookie value of the NT kernel image (ntoskrnl.exe),

which is based, inter alia, on the RDTSC instruction output.

● Remote attacks. As far as the authors are concerned, a majority of factors considered

trivial in Local EoP attacks, might be impossible to predict without local access to the

victim machine. The only potential attack vector known to the authors, would rely on

sniffing packets with certain types of information, which could reveal the absolute boot-

~ 34 ~

time of the machine under attack (or simply its up time), and the hardware-related specs;

then, based on the collected information, trying to blindly guess the GS cookie value, as

presented in section 4.1 - by approximating the tick count at the time of cookie

initialization, and assuming a particular virtual address of the global __security_cookie

variable.

7. Vendor timeline

6 December 2010: Initial e-mail to Microsoft informing that our research indicates that the
ring-0 driver cookies are predictable.

6 December 2010: Initial vendor response, confirming reception.

8 December 2010: Second vendor response. Vendor was aware of the low entropy of the
cookies and agrees that our approach is reasonable. Vendor statest that
there are no plans for updating the mechanism in current versions of
Windows, but will be considering it for future versions. Vendor did not
request the paper to be released later than the authors originally planned.

8. Conclusion

During the last couple of years, GS cookies implemented by Microsoft compilers, together with

other techniques such as stack variable reordering, have been claimed an ultimate weapon

against successful attacks, relying on stack-based vulnerabilities. Nowadays, most attention is

usually focused around the security of user-mode applications (e.g. internet browsers and

related components), due to the fact that any security flaws found within these can lead to a

massive amount of computer infections. However, one should keep in mind that the availability

and exploitability of Local Escalation of Privilege attacks also affects the entire IT field,

especially in the context of server machines, sharing a single operating system amongst

multiple user accounts.

The techniques presented in this paper aimed to show, how otherwise non-exploitable

vulnerabilities, continuously found within numerous device drivers running on Windows, can be

used to compromise a victim’s machine with very high success probability. What is more, the

paper is expected to completely change the way people look at certain - past and upcoming -

kernel stack-based buffer overflow flaws - from Denial of Service conditions, to Exploitable with

5-70% success rate, depending on the executable image under attack. Given the nature of the

current GS cookies’ implementation, resolving the issue would require all of the vendors to re-

compile their device drivers, to take advantage of a new, improved solution. For obvious

reasons, such a world-wide task is never going to fully succeed.

~ 35 ~

The authors strongly believe that other techniques might exist, improving the already

accomplished level of accuracy - any researcher is highly encouraged to perform further

research in this field; the best situation would be to defeat the protection scheme completely,

thus automatically making all of the Windows kernel-mode stack vulnerabilities exploitable into

ring-0 code execution. Moreover, little is still known about how the outlined techniques could be

applied remotely - most of the factors taken into account while attacking the machine as a local

user, are unable to be obtained without local access to the computer in consideration.

In order to address the weaknesses of each GS cookie entropy source, one or more potential

solutions have been described. The authors are aware of the fact that some of the proposed

techniques can be attacked one way, or another; although, each and every single concept

presents a considerably higher entropy level, reducing the cookie prediction probability from

50%, to numbers that are only satisfactory in a lab environment, or not even as good.

Additionally, we especially approve one of the concepts presented by skape in his paper -

making the operating system responsible for implementing a common, standardised interface,

which would then be used by all of the secure device drivers. By doing so, Microsoft would be

able to easily keep track of the protection level provided by the mechanism, and release

potential improvements, which would immediately affect all of the kernel modules, no matter

whether the original vendor knows about the threat, or not - or whether he still exists, in the first

place.

Happy vulnerability hunting!

~ 36 ~

Appendix A – Microsoft Windows win32k.sys

RtlQueryRegistryValues vulnerability exploitation on

Windows XP SP3 (32-bit).

Interestingly, the overall concept of analyzing kernel-mode GS cookie implementation was born,

while considering possible exploitation vectors of the CVE-2010-4192 vulnerability, publicly

disclosed on 2010-11-29 by a Chinese hacker noobpwnftw. In a short security advisory placed

on the CodeProject[8] website, the discoverer surprisingly presented some of the flawed

implementation basics, and possible exploitation paths.

Additionally, the article author presented snippets of a Proof of Concept exploit, claimed to

support both Windows Vista and Windows 7. After a quick investigation, it turned out that the

vulnerable routine on either of the two supported platforms is not GS-protected. Therefore, the

issue becomes a typical stack-based buffer overflow, which can be trivially exploited, by just

replacing the original return address with an attacker-controlled value.

However, an older version of the operating system – Windows XP SP3 – is indeed protected by

a regular GS cookie, implemented in the manner described in detail in the previous sections.

Listings 19 and 20 present the vulnerable routine prologue and epilogue.

 mov edi, edi

 push ebp

 mov ebp, esp

 sub esp, 42Ch

 mov eax, __security_cookie

 push ebx

 mov [ebp-4], eax

Listing 19. The flawed function’s entry point.

 mov ecx, [ebp-4]

 pop edi

 pop esi

 pop ebx

 call __security_check_cookie

 leave

 retn 8

Listing 20. The flawed win32k.sys function’s epilogue.

As shown, the win32k!__security_cookie value is placed directly before the stack frame at the

routine beginning, and correctly verified before returning to the original caller. Although it wasn’t

~ 37 ~

explicitly explained, the authors suspect that the actual reason of not releasing a reliable exploit

for the Windows XP platform was the stack protection itself.

After performing a number of experimental tests, measuring the time and tick deltas between

various system events, the authors developed a stable exploit for the vulnerability discussed in

this chapter, in order to present the practical usability of the techniques presented in this paper.

Although the exploit source code is not going to be published, a video recording – presenting

successful exploitation of the Windows XP vulnerability – has been created, and can be

downloaded from: http://j00ru.vexillium.org/dump/CVE-2010-4398/exploit.avi.

loc_BF87EE99:

 push dword ptr [ebp+hObject1] ; Handle

 call edi ; ZwClose

 jmp loc_BF87F0AB

loc_BF87EEA6:

 push dword ptr [ebp+hObject2] ; Handle

 call edi ; ZwClose

 jmp loc_BF87F0B7

Listing 19. Code responsible for dereferencing active object handles.

Interestingly, although making use of the security flaw becomes non-trivial without performing a

GS-prediction attack, as opposed to the modern Windows editions, it is believed that it can be

still reliably exploited. The goal can be potentially achieved, thanks to the following code,

executed right before trying to leave the function - see Listing 19 and 20.

if(hObject1 != NULL) ZwClose(hObject1);

if(hObject2 != NULL) ZwClose(hObject2);

Listing 20. High-level language representation of assembly code presented in Listing 19.

Thanks to the function stack layout, both handle values are controlled by the attacker, at the

time of the ZwClose kernel API calls. In this situation, a potential attacker could make the

following decisions:

1. Set both values to NULL’s, so that no handle gets dereferenced,

2. Fill one of the variables with an invalid handle value, or a handle with the NOT_CLOSABLE flag

set,

3. Fill the variables with valid user-mode handles,

4. Fill the variables with valid kernel-mode handles.

The question is – what particular benefits could be accomplished by an attacker, by performing

each action listed below.

http://j00ru.vexillium.org/dump/CVE-2010-4398/exploit.avi

~ 38 ~

1. Filling both hObject1 and hObject2 with zeros makes it possible to omit the conditional code

blocks. It is a good idea, when one doesn’t need to care about the GS cookie, and goes straight

into overwriting the return address.

2. Filling either hObject1 or hObject2 with an invalid or protected handle results in a

KERNEL_INVALID_HANDLE bug check (Blue Screen of Death). By doing so, the attacker loses

the ability to run arbitrary code in kernel-mode.

3. Filling the variables with typical handles, created from within user-mode doesn’t bring any

particular benefits, as the same result could be simply achieved by calling the CloseHandle API

from within ring-3.

The only, truly beneficial choice, is to close a kernel-mode (thus system-wide) handle. By doing

so, the attacker could dereference a chosen object one or more times; when the

ReferenceCount number assigned to the chosen object reached zero, the object pool allocation

would be freed, and possibly further reused to store other types of unrelated data. In other

words, an attacker is able to trigger typical use-after-free conditions using one or more kernel

objects. Seemingly, the vulnerability is less trivial, but still possible to be taken advantage of by

a determined attacker.

References

[1] National Vulnerability Database. CVE-2010-4398.

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-4398

[2] skape. Reducing the effective entropy of GS cookies. Uninformed vol. 7, 2007.

http://uninformed.org/?v=7&a=2&t=sumry

[3] National Vulnerability Database. CVE-2009-1126.

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-1126

[4] Sven B. Schreiber, Tomasz Nowak. Undocumented functions of NTDLL

 - NtQuerySystemInformation.

http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/System%20Inform

ation/NtQuerySystemInformation.html

[5] Nirsoft, struct KUSER_SHARED_DATA.

http://www.nirsoft.net/kernel_struct/vista/KUSER_SHARED_DATA.html

[6] Undocumented function of NTDLL - NtCreateSymbolicLinkObject.

http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/NT%20Objects/Sy

mbolic%20Link/NtCreateSymbolicLinkObject.html

[7] MSDN - NtQueryPerformanceCounter Function

http://msdn.microsoft.com/en-us/library/bb432384%28VS.85%29.aspx

[8] CodeProject, http://www.codeproject.com/

http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2010-4398&sa=D&sntz=1&usg=AFQjCNEz_8PC7ebzy0mMkDWXvHeYV3dK2g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2010-4398&sa=D&sntz=1&usg=AFQjCNEz_8PC7ebzy0mMkDWXvHeYV3dK2g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2010-4398&sa=D&sntz=1&usg=AFQjCNEz_8PC7ebzy0mMkDWXvHeYV3dK2g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2010-4398&sa=D&sntz=1&usg=AFQjCNEz_8PC7ebzy0mMkDWXvHeYV3dK2g
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-4398
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-4398
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2010-4398&sa=D&sntz=1&usg=AFQjCNEz_8PC7ebzy0mMkDWXvHeYV3dK2g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2010-4398&sa=D&sntz=1&usg=AFQjCNEz_8PC7ebzy0mMkDWXvHeYV3dK2g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2010-4398&sa=D&sntz=1&usg=AFQjCNEz_8PC7ebzy0mMkDWXvHeYV3dK2g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2010-4398&sa=D&sntz=1&usg=AFQjCNEz_8PC7ebzy0mMkDWXvHeYV3dK2g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2010-4398&sa=D&sntz=1&usg=AFQjCNEz_8PC7ebzy0mMkDWXvHeYV3dK2g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2010-4398&sa=D&sntz=1&usg=AFQjCNEz_8PC7ebzy0mMkDWXvHeYV3dK2g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2010-4398&sa=D&sntz=1&usg=AFQjCNEz_8PC7ebzy0mMkDWXvHeYV3dK2g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2010-4398&sa=D&sntz=1&usg=AFQjCNEz_8PC7ebzy0mMkDWXvHeYV3dK2g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2010-4398&sa=D&sntz=1&usg=AFQjCNEz_8PC7ebzy0mMkDWXvHeYV3dK2g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2010-4398&sa=D&sntz=1&usg=AFQjCNEz_8PC7ebzy0mMkDWXvHeYV3dK2g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2010-4398&sa=D&sntz=1&usg=AFQjCNEz_8PC7ebzy0mMkDWXvHeYV3dK2g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2010-4398&sa=D&sntz=1&usg=AFQjCNEz_8PC7ebzy0mMkDWXvHeYV3dK2g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2010-4398&sa=D&sntz=1&usg=AFQjCNEz_8PC7ebzy0mMkDWXvHeYV3dK2g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2010-4398&sa=D&sntz=1&usg=AFQjCNEz_8PC7ebzy0mMkDWXvHeYV3dK2g
http://www.google.com/url?q=http%3A%2F%2Funinformed.org%2F%3Fv%3D7%26a%3D2%26t%3Dsumry&sa=D&sntz=1&usg=AFQjCNEwZHyoXd3xF_o852kaPKl2G3Pspg
http://www.google.com/url?q=http%3A%2F%2Funinformed.org%2F%3Fv%3D7%26a%3D2%26t%3Dsumry&sa=D&sntz=1&usg=AFQjCNEwZHyoXd3xF_o852kaPKl2G3Pspg
http://uninformed.org/?v=7&a=2&t=sumry
http://uninformed.org/?v=7&a=2&t=sumry
http://www.google.com/url?q=http%3A%2F%2Funinformed.org%2F%3Fv%3D7%26a%3D2%26t%3Dsumry&sa=D&sntz=1&usg=AFQjCNEwZHyoXd3xF_o852kaPKl2G3Pspg
http://www.google.com/url?q=http%3A%2F%2Funinformed.org%2F%3Fv%3D7%26a%3D2%26t%3Dsumry&sa=D&sntz=1&usg=AFQjCNEwZHyoXd3xF_o852kaPKl2G3Pspg
http://www.google.com/url?q=http%3A%2F%2Funinformed.org%2F%3Fv%3D7%26a%3D2%26t%3Dsumry&sa=D&sntz=1&usg=AFQjCNEwZHyoXd3xF_o852kaPKl2G3Pspg
http://www.google.com/url?q=http%3A%2F%2Funinformed.org%2F%3Fv%3D7%26a%3D2%26t%3Dsumry&sa=D&sntz=1&usg=AFQjCNEwZHyoXd3xF_o852kaPKl2G3Pspg
http://www.google.com/url?q=http%3A%2F%2Funinformed.org%2F%3Fv%3D7%26a%3D2%26t%3Dsumry&sa=D&sntz=1&usg=AFQjCNEwZHyoXd3xF_o852kaPKl2G3Pspg
http://www.google.com/url?q=http%3A%2F%2Funinformed.org%2F%3Fv%3D7%26a%3D2%26t%3Dsumry&sa=D&sntz=1&usg=AFQjCNEwZHyoXd3xF_o852kaPKl2G3Pspg
http://www.google.com/url?q=http%3A%2F%2Funinformed.org%2F%3Fv%3D7%26a%3D2%26t%3Dsumry&sa=D&sntz=1&usg=AFQjCNEwZHyoXd3xF_o852kaPKl2G3Pspg
http://www.google.com/url?q=http%3A%2F%2Funinformed.org%2F%3Fv%3D7%26a%3D2%26t%3Dsumry&sa=D&sntz=1&usg=AFQjCNEwZHyoXd3xF_o852kaPKl2G3Pspg
http://www.google.com/url?q=http%3A%2F%2Funinformed.org%2F%3Fv%3D7%26a%3D2%26t%3Dsumry&sa=D&sntz=1&usg=AFQjCNEwZHyoXd3xF_o852kaPKl2G3Pspg
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2009-1126&sa=D&sntz=1&usg=AFQjCNHDyyf5-BAGjUheOFOGtTwL0sez-g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2009-1126&sa=D&sntz=1&usg=AFQjCNHDyyf5-BAGjUheOFOGtTwL0sez-g
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-1126
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-1126
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2009-1126&sa=D&sntz=1&usg=AFQjCNHDyyf5-BAGjUheOFOGtTwL0sez-g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2009-1126&sa=D&sntz=1&usg=AFQjCNHDyyf5-BAGjUheOFOGtTwL0sez-g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2009-1126&sa=D&sntz=1&usg=AFQjCNHDyyf5-BAGjUheOFOGtTwL0sez-g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2009-1126&sa=D&sntz=1&usg=AFQjCNHDyyf5-BAGjUheOFOGtTwL0sez-g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2009-1126&sa=D&sntz=1&usg=AFQjCNHDyyf5-BAGjUheOFOGtTwL0sez-g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2009-1126&sa=D&sntz=1&usg=AFQjCNHDyyf5-BAGjUheOFOGtTwL0sez-g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2009-1126&sa=D&sntz=1&usg=AFQjCNHDyyf5-BAGjUheOFOGtTwL0sez-g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2009-1126&sa=D&sntz=1&usg=AFQjCNHDyyf5-BAGjUheOFOGtTwL0sez-g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2009-1126&sa=D&sntz=1&usg=AFQjCNHDyyf5-BAGjUheOFOGtTwL0sez-g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2009-1126&sa=D&sntz=1&usg=AFQjCNHDyyf5-BAGjUheOFOGtTwL0sez-g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2009-1126&sa=D&sntz=1&usg=AFQjCNHDyyf5-BAGjUheOFOGtTwL0sez-g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2009-1126&sa=D&sntz=1&usg=AFQjCNHDyyf5-BAGjUheOFOGtTwL0sez-g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2009-1126&sa=D&sntz=1&usg=AFQjCNHDyyf5-BAGjUheOFOGtTwL0sez-g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2009-1126&sa=D&sntz=1&usg=AFQjCNHDyyf5-BAGjUheOFOGtTwL0sez-g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2009-1126&sa=D&sntz=1&usg=AFQjCNHDyyf5-BAGjUheOFOGtTwL0sez-g
http://www.google.com/url?q=http%3A%2F%2Fweb.nvd.nist.gov%2Fview%2Fvuln%2Fdetail%3FvulnId%3DCVE-2009-1126&sa=D&sntz=1&usg=AFQjCNHDyyf5-BAGjUheOFOGtTwL0sez-g
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FSystem%2520Information%2FNtQuerySystemInformation.html&sa=D&sntz=1&usg=AFQjCNGV2kGK_fgOpO-OZzfceeHpEu4IHg
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FSystem%2520Information%2FNtQuerySystemInformation.html&sa=D&sntz=1&usg=AFQjCNGV2kGK_fgOpO-OZzfceeHpEu4IHg
http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/System%20Information/NtQuerySystemInformation.html
http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/System%20Information/NtQuerySystemInformation.html
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FSystem%2520Information%2FNtQuerySystemInformation.html&sa=D&sntz=1&usg=AFQjCNGV2kGK_fgOpO-OZzfceeHpEu4IHg
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FSystem%2520Information%2FNtQuerySystemInformation.html&sa=D&sntz=1&usg=AFQjCNGV2kGK_fgOpO-OZzfceeHpEu4IHg
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FSystem%2520Information%2FNtQuerySystemInformation.html&sa=D&sntz=1&usg=AFQjCNGV2kGK_fgOpO-OZzfceeHpEu4IHg
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FSystem%2520Information%2FNtQuerySystemInformation.html&sa=D&sntz=1&usg=AFQjCNGV2kGK_fgOpO-OZzfceeHpEu4IHg
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FSystem%2520Information%2FNtQuerySystemInformation.html&sa=D&sntz=1&usg=AFQjCNGV2kGK_fgOpO-OZzfceeHpEu4IHg
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FSystem%2520Information%2FNtQuerySystemInformation.html&sa=D&sntz=1&usg=AFQjCNGV2kGK_fgOpO-OZzfceeHpEu4IHg
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FSystem%2520Information%2FNtQuerySystemInformation.html&sa=D&sntz=1&usg=AFQjCNGV2kGK_fgOpO-OZzfceeHpEu4IHg
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FSystem%2520Information%2FNtQuerySystemInformation.html&sa=D&sntz=1&usg=AFQjCNGV2kGK_fgOpO-OZzfceeHpEu4IHg
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FSystem%2520Information%2FNtQuerySystemInformation.html&sa=D&sntz=1&usg=AFQjCNGV2kGK_fgOpO-OZzfceeHpEu4IHg
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FSystem%2520Information%2FNtQuerySystemInformation.html&sa=D&sntz=1&usg=AFQjCNGV2kGK_fgOpO-OZzfceeHpEu4IHg
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FSystem%2520Information%2FNtQuerySystemInformation.html&sa=D&sntz=1&usg=AFQjCNGV2kGK_fgOpO-OZzfceeHpEu4IHg
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FSystem%2520Information%2FNtQuerySystemInformation.html&sa=D&sntz=1&usg=AFQjCNGV2kGK_fgOpO-OZzfceeHpEu4IHg
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FSystem%2520Information%2FNtQuerySystemInformation.html&sa=D&sntz=1&usg=AFQjCNGV2kGK_fgOpO-OZzfceeHpEu4IHg
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FSystem%2520Information%2FNtQuerySystemInformation.html&sa=D&sntz=1&usg=AFQjCNGV2kGK_fgOpO-OZzfceeHpEu4IHg
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FSystem%2520Information%2FNtQuerySystemInformation.html&sa=D&sntz=1&usg=AFQjCNGV2kGK_fgOpO-OZzfceeHpEu4IHg
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FSystem%2520Information%2FNtQuerySystemInformation.html&sa=D&sntz=1&usg=AFQjCNGV2kGK_fgOpO-OZzfceeHpEu4IHg
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FSystem%2520Information%2FNtQuerySystemInformation.html&sa=D&sntz=1&usg=AFQjCNGV2kGK_fgOpO-OZzfceeHpEu4IHg
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FSystem%2520Information%2FNtQuerySystemInformation.html&sa=D&sntz=1&usg=AFQjCNGV2kGK_fgOpO-OZzfceeHpEu4IHg
http://www.google.com/url?q=http%3A%2F%2Fwww.nirsoft.net%2Fkernel_struct%2Fvista%2FKUSER_SHARED_DATA.html&sa=D&sntz=1&usg=AFQjCNGtpKA09T8XyWG09ggt22sDAVw2SA
http://www.google.com/url?q=http%3A%2F%2Fwww.nirsoft.net%2Fkernel_struct%2Fvista%2FKUSER_SHARED_DATA.html&sa=D&sntz=1&usg=AFQjCNGtpKA09T8XyWG09ggt22sDAVw2SA
http://www.google.com/url?q=http%3A%2F%2Fwww.nirsoft.net%2Fkernel_struct%2Fvista%2FKUSER_SHARED_DATA.html&sa=D&sntz=1&usg=AFQjCNGtpKA09T8XyWG09ggt22sDAVw2SA
http://www.google.com/url?q=http%3A%2F%2Fwww.nirsoft.net%2Fkernel_struct%2Fvista%2FKUSER_SHARED_DATA.html&sa=D&sntz=1&usg=AFQjCNGtpKA09T8XyWG09ggt22sDAVw2SA
http://www.nirsoft.net/kernel_struct/vista/KUSER_SHARED_DATA.html
http://www.nirsoft.net/kernel_struct/vista/KUSER_SHARED_DATA.html
http://www.google.com/url?q=http%3A%2F%2Fwww.nirsoft.net%2Fkernel_struct%2Fvista%2FKUSER_SHARED_DATA.html&sa=D&sntz=1&usg=AFQjCNGtpKA09T8XyWG09ggt22sDAVw2SA
http://www.google.com/url?q=http%3A%2F%2Fwww.nirsoft.net%2Fkernel_struct%2Fvista%2FKUSER_SHARED_DATA.html&sa=D&sntz=1&usg=AFQjCNGtpKA09T8XyWG09ggt22sDAVw2SA
http://www.google.com/url?q=http%3A%2F%2Fwww.nirsoft.net%2Fkernel_struct%2Fvista%2FKUSER_SHARED_DATA.html&sa=D&sntz=1&usg=AFQjCNGtpKA09T8XyWG09ggt22sDAVw2SA
http://www.google.com/url?q=http%3A%2F%2Fwww.nirsoft.net%2Fkernel_struct%2Fvista%2FKUSER_SHARED_DATA.html&sa=D&sntz=1&usg=AFQjCNGtpKA09T8XyWG09ggt22sDAVw2SA
http://www.google.com/url?q=http%3A%2F%2Fwww.nirsoft.net%2Fkernel_struct%2Fvista%2FKUSER_SHARED_DATA.html&sa=D&sntz=1&usg=AFQjCNGtpKA09T8XyWG09ggt22sDAVw2SA
http://www.google.com/url?q=http%3A%2F%2Fwww.nirsoft.net%2Fkernel_struct%2Fvista%2FKUSER_SHARED_DATA.html&sa=D&sntz=1&usg=AFQjCNGtpKA09T8XyWG09ggt22sDAVw2SA
http://www.google.com/url?q=http%3A%2F%2Fwww.nirsoft.net%2Fkernel_struct%2Fvista%2FKUSER_SHARED_DATA.html&sa=D&sntz=1&usg=AFQjCNGtpKA09T8XyWG09ggt22sDAVw2SA
http://www.google.com/url?q=http%3A%2F%2Fwww.nirsoft.net%2Fkernel_struct%2Fvista%2FKUSER_SHARED_DATA.html&sa=D&sntz=1&usg=AFQjCNGtpKA09T8XyWG09ggt22sDAVw2SA
http://www.google.com/url?q=http%3A%2F%2Fwww.nirsoft.net%2Fkernel_struct%2Fvista%2FKUSER_SHARED_DATA.html&sa=D&sntz=1&usg=AFQjCNGtpKA09T8XyWG09ggt22sDAVw2SA
http://www.google.com/url?q=http%3A%2F%2Fwww.nirsoft.net%2Fkernel_struct%2Fvista%2FKUSER_SHARED_DATA.html&sa=D&sntz=1&usg=AFQjCNGtpKA09T8XyWG09ggt22sDAVw2SA
http://www.google.com/url?q=http%3A%2F%2Fwww.nirsoft.net%2Fkernel_struct%2Fvista%2FKUSER_SHARED_DATA.html&sa=D&sntz=1&usg=AFQjCNGtpKA09T8XyWG09ggt22sDAVw2SA
http://www.google.com/url?q=http%3A%2F%2Fwww.nirsoft.net%2Fkernel_struct%2Fvista%2FKUSER_SHARED_DATA.html&sa=D&sntz=1&usg=AFQjCNGtpKA09T8XyWG09ggt22sDAVw2SA
http://www.google.com/url?q=http%3A%2F%2Fwww.nirsoft.net%2Fkernel_struct%2Fvista%2FKUSER_SHARED_DATA.html&sa=D&sntz=1&usg=AFQjCNGtpKA09T8XyWG09ggt22sDAVw2SA
http://www.google.com/url?q=http%3A%2F%2Fwww.nirsoft.net%2Fkernel_struct%2Fvista%2FKUSER_SHARED_DATA.html&sa=D&sntz=1&usg=AFQjCNGtpKA09T8XyWG09ggt22sDAVw2SA
http://www.google.com/url?q=http%3A%2F%2Fwww.nirsoft.net%2Fkernel_struct%2Fvista%2FKUSER_SHARED_DATA.html&sa=D&sntz=1&usg=AFQjCNGtpKA09T8XyWG09ggt22sDAVw2SA
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/NT%20Objects/Symbolic%20Link/NtCreateSymbolicLinkObject.html
http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/NT%20Objects/Symbolic%20Link/NtCreateSymbolicLinkObject.html
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fundocumented.ntinternals.net%2FUserMode%2FUndocumented%2520Functions%2FNT%2520Objects%2FSymbolic%2520Link%2FNtCreateSymbolicLinkObject.html&sa=D&sntz=1&usg=AFQjCNHsuPQj3si2lO0HPT8tEMNdEdCHhQ
http://www.google.com/url?q=http%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Flibrary%2Fbb432384%2528VS.85%2529.aspx&sa=D&sntz=1&usg=AFQjCNHXuEsCVNvJqohKWNMZ1Noi3wI7Gg
http://www.google.com/url?q=http%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Flibrary%2Fbb432384%2528VS.85%2529.aspx&sa=D&sntz=1&usg=AFQjCNHXuEsCVNvJqohKWNMZ1Noi3wI7Gg
http://www.google.com/url?q=http%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Flibrary%2Fbb432384%2528VS.85%2529.aspx&sa=D&sntz=1&usg=AFQjCNHXuEsCVNvJqohKWNMZ1Noi3wI7Gg
http://www.google.com/url?q=http%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Flibrary%2Fbb432384%2528VS.85%2529.aspx&sa=D&sntz=1&usg=AFQjCNHXuEsCVNvJqohKWNMZ1Noi3wI7Gg
http://www.google.com/url?q=http%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Flibrary%2Fbb432384%2528VS.85%2529.aspx&sa=D&sntz=1&usg=AFQjCNHXuEsCVNvJqohKWNMZ1Noi3wI7Gg
http://www.google.com/url?q=http%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Flibrary%2Fbb432384%2528VS.85%2529.aspx&sa=D&sntz=1&usg=AFQjCNHXuEsCVNvJqohKWNMZ1Noi3wI7Gg
http://www.google.com/url?q=http%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Flibrary%2Fbb432384%2528VS.85%2529.aspx&sa=D&sntz=1&usg=AFQjCNHXuEsCVNvJqohKWNMZ1Noi3wI7Gg
http://www.google.com/url?q=http%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Flibrary%2Fbb432384%2528VS.85%2529.aspx&sa=D&sntz=1&usg=AFQjCNHXuEsCVNvJqohKWNMZ1Noi3wI7Gg
http://www.google.com/url?q=http%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Flibrary%2Fbb432384%2528VS.85%2529.aspx&sa=D&sntz=1&usg=AFQjCNHXuEsCVNvJqohKWNMZ1Noi3wI7Gg
http://www.google.com/url?q=http%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Flibrary%2Fbb432384%2528VS.85%2529.aspx&sa=D&sntz=1&usg=AFQjCNHXuEsCVNvJqohKWNMZ1Noi3wI7Gg
http://www.google.com/url?q=http%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Flibrary%2Fbb432384%2528VS.85%2529.aspx&sa=D&sntz=1&usg=AFQjCNHXuEsCVNvJqohKWNMZ1Noi3wI7Gg
http://www.google.com/url?q=http%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Flibrary%2Fbb432384%2528VS.85%2529.aspx&sa=D&sntz=1&usg=AFQjCNHXuEsCVNvJqohKWNMZ1Noi3wI7Gg
http://www.google.com/url?q=http%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Flibrary%2Fbb432384%2528VS.85%2529.aspx&sa=D&sntz=1&usg=AFQjCNHXuEsCVNvJqohKWNMZ1Noi3wI7Gg
http://www.google.com/url?q=http%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Flibrary%2Fbb432384%2528VS.85%2529.aspx&sa=D&sntz=1&usg=AFQjCNHXuEsCVNvJqohKWNMZ1Noi3wI7Gg
http://www.google.com/url?q=http%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Flibrary%2Fbb432384%2528VS.85%2529.aspx&sa=D&sntz=1&usg=AFQjCNHXuEsCVNvJqohKWNMZ1Noi3wI7Gg
http://www.google.com/url?q=http%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Flibrary%2Fbb432384%2528VS.85%2529.aspx&sa=D&sntz=1&usg=AFQjCNHXuEsCVNvJqohKWNMZ1Noi3wI7Gg
http://www.google.com/url?q=http%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Flibrary%2Fbb432384%2528VS.85%2529.aspx&sa=D&sntz=1&usg=AFQjCNHXuEsCVNvJqohKWNMZ1Noi3wI7Gg
http://www.google.com/url?q=http%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Flibrary%2Fbb432384%2528VS.85%2529.aspx&sa=D&sntz=1&usg=AFQjCNHXuEsCVNvJqohKWNMZ1Noi3wI7Gg
http://www.google.com/url?q=http%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Flibrary%2Fbb432384%2528VS.85%2529.aspx&sa=D&sntz=1&usg=AFQjCNHXuEsCVNvJqohKWNMZ1Noi3wI7Gg
http://www.google.com/url?q=http%3A%2F%2Fwww.codeproject.com%2F&sa=D&sntz=1&usg=AFQjCNF1KO4PKiSQbd6JFbb3wJu9xpU_hQ
http://www.google.com/url?q=http%3A%2F%2Fwww.codeproject.com%2F&sa=D&sntz=1&usg=AFQjCNF1KO4PKiSQbd6JFbb3wJu9xpU_hQ
http://www.google.com/url?q=http%3A%2F%2Fwww.codeproject.com%2F&sa=D&sntz=1&usg=AFQjCNF1KO4PKiSQbd6JFbb3wJu9xpU_hQ
http://www.google.com/url?q=http%3A%2F%2Fwww.codeproject.com%2F&sa=D&sntz=1&usg=AFQjCNF1KO4PKiSQbd6JFbb3wJu9xpU_hQ
http://www.google.com/url?q=http%3A%2F%2Fwww.codeproject.com%2F&sa=D&sntz=1&usg=AFQjCNF1KO4PKiSQbd6JFbb3wJu9xpU_hQ
http://www.google.com/url?q=http%3A%2F%2Fwww.codeproject.com%2F&sa=D&sntz=1&usg=AFQjCNF1KO4PKiSQbd6JFbb3wJu9xpU_hQ
http://www.google.com/url?q=http%3A%2F%2Fwww.codeproject.com%2F&sa=D&sntz=1&usg=AFQjCNF1KO4PKiSQbd6JFbb3wJu9xpU_hQ
http://www.google.com/url?q=http%3A%2F%2Fwww.codeproject.com%2F&sa=D&sntz=1&usg=AFQjCNF1KO4PKiSQbd6JFbb3wJu9xpU_hQ

~ 39 ~

Thanks

We would like to thank the following people - as well as every single anonymous participant - for

taking part in the public survey (http://j00ru.vexillium.org/ticks/), and providing empirical

information about the GetSystemTimeAdjustment Windows API output (in ascii-alphabetical

order):

0vercl0k, 3mpty, 9x19, =BTK=, ADS, Ace Pace, AdiKX, Agares, Ahmed, Arteq, Banana, Bartoo,

Claudiu Francu, D0han, D3LLF, Edi, Fanael, Furio v2.0, FurioSan, G. Geshev, GOJU, Gabriel

Gonzalez, Galcia, Hoo, Horadrim, Icewall, Idalgo, Ivanlef0u, Jacosz, Jurgi Filodendryta,

KORraN, Karton, Kele, Kicaj, Kiro, Krystian Bigaj, KrzaQ, Lewy, Lipa, M4R10, MBu, MDobak,

MSM, MagicMac, Makdaam, MarLo, MateuszR, Mawekl, Michal Z., Naidmer, Netrix, Pafi, Paul,

Piochu, PiotrB, Qyon, Radom, ReWolf, Redford, Reg, Riddler, Rolek, Rolex-, RomeoKnight,

S0obi, Sayane, Sean de Regge, SparK, Samlis Coldwind, TaPiOn, Talv, Thomas, Trol, Tyler

Oderkirk, Unknow, Unreal, VGT, Vineel Kumar Reddy Kovvuri, Wawi, Xylitol, YouKnowit,

ZaQ32, Zeux, acz, adam_i, ajcek, ajgon, anjw, bartek_sekula, berials, bidek, blejz, bobbobson,

bruce dang, cLs, conio, cyriel, d15ea5e, dD3s, dextero, dikamilo, dzeta, en, ergo, eustachy86,

faramir, faust1002, ged_ ' "><, globi, grable, h0wl, hazy77, hxv, impulse9, jacekowski, jarekps,

jerrythemouse, justhelping :), kaz1007, kernelpool, kij, kosmito, koziolek, krajek, kravietz, kutar,

logan, lukasz anwajler, lsalomon, lzsk, m, mINA87, magu, malpka, mariusz, memek, milordi,

misiekzap, mjuad, mmm, mrx1, msi, mt3o, muzzy, nek, nezumi, nickname, none, nonek, nuivall,

olewales, oshogbo, p____h, pashok, pawelu, pawlos, phil hamer, pkh,

pozdrawiamtegouzytkownika, ppkt, rad, renno, ryniek, s4tan, shaql, suN8Hclf, superhero01,

tanatos, taviso, tomekby, toxicbeaver, us3r, vashpan, vndctv, vrx, witosuaw, xmoss, xyz69,

yabba, yourand, zaak, zakrzak, zarcel.

Furthermore, we would also like to credit the valuable help of the article reviewers: Unavowed,

Tavis Ormandy, Ben Hawkes, Marc-Antoine Ruel, Carlos Pizano, Matt Miller, and deus. Thank

you!

Disclaimer

The views expressed here are mine alone and not those of my employer.

Gynvael Coldwind

http://j00ru.vexillium.org/ticks/

