
Identifying and Exploiting Windows Kernel Race

Conditions via Memory Access Patterns

Mateusz Jurczyk, Gynvael Coldwind
Google Inc.

April 2013

Abstract

The overall security posture of operating systems’ kernels – and specif-
ically the Microsoft Windows NT kernel – against both local and remote
attacks has visibly improved throughout the last decade. In our opinion,
this is primarily due to the increasing interest in kernel-mode vulnerabili-
ties by both white and black-hat parties, as they ultimately allow attackers
to subvert the currently widespread defense-in-depth technologies imple-
mented on operating system level, such as sandboxing, or other features
enabling better management of privileges within the execution environ-
ment (e.g. Mandatory Integrity Control). As a direct outcome, Microsoft
has invested considerable resources in both improving the development
process with programs like Secure Development Lifecycle, and explicitly
hardening the kernel against existing attacks; the latter was particularly
characteristic to Windows 8, which introduced more kernel security im-
provements than any NT-family system thus far[11]. In this paper, we
discuss the concept of employing CPU-level operating system instrumen-
tation to identify potential instances of local race conditions in fetching
user-mode input data within system call handlers and other user-facing
ring-0 code, and how it was successfully implemented in the Bochspwn
project. Further in the document, we present a number of generic tech-
niques easing the exploitation of timing bound kernel vulnerabilities and
show how these techniques can be employed in practical attacks against
three exemplary vulnerabilities discovered by Bochspwn. In the last sec-
tions, we conclusively provide some suggestions on related research areas
that haven’t been fully explored and require further development.

1

1 Introduction

The Microsoft Windows NT kernel – as designed back in 1993 to run within the
IA-32 Protected Mode – makes extensive use of privilege separation, by differen-
tiating a restricted user mode used to execute plain application code and a fully
privileged kernel mode, which maintains complete control over the machine1

and is responsible for running the core of the operating system together with
device drivers, which interact with physical devices, manage virtual and physi-
cal memory, process user-mode requests and perform other system-critical tasks.
Furthermore, the NT kernel provides support for multi-threading, enabling mul-
tiple programs to share the available CPU resources in a manner that does not
require applications to be aware of the undergoing thread scheduling. Last but
not least, the kernel implements address space separation, splitting the overall
available virtual address space into a user-mode accessible region, a kernel-mode
accessible region and non-addressable space (x86-64 only). Most notably, the
user-mode memory regions are separate for each process running in the system
(creating an illusion of exclusive address space for each program) and can be
accessed from both ring-3 and ring-0. On the other hand, the kernel-mode re-
gion of the address space is system wide (i.e. don’t change between context
switches)2 and accessible only from ring-0. Typical address space layouts3 used
on 32-bit and 64-bit Windows platforms are illustrated in Figure 1.

In terms of the above, the user-mode portions of memory can be thought of
as a shared resource. Indeed, these regions are accessible within both modes of
execution, and due to context switching and multi-core hardware configurations,
neither ring-3 nor ring-0 code can know for sure if another thread is modifying
data at a specific user-mode address at any given point of time4. Simultaneous
access to shared resources like memory is a well-known problem in the world
of software development – by now, it has been widely discussed and resolved
in numerous ways. In case of maintaining kernel state consistency while pro-
cessing data originating from user-mode memory, there are two primary means
to achieve a secure implementation: either ensure that each bit of the shared
memory is fetched only once within each functional block of kernel code, or
alternatively enforce access synchronization. As the latter option is difficult to
implement correctly and comes at a significant performance cost, it is common
to observe that when a kernel routine needs to operate on user-provided data,

1The Intel x86 architecture supports underlying modes of execution that have an even
higher degree of control over the physical CPU, such as Hypervisor Mode or System Manage-
ment Mode.

2One exception to the rule is the so–called “session memory”, which may or may not be
mapped within the kernel address space depending on whether the current thread is marked
as GUI-enabled.

3On 32-bit versions of Windows, /3GB or IncreaseUserVa boot-time option can be used
to enlarge the user-mode virtual address space to three gigabytes and limit the kernel-mode
components to the remaining one gigabyte of memory.

4It is theoretically possible to ensure user-mode data integrity across a specific kernel
code block by running at DISPATCH LEVEL or higher IRQL on a single-core hardware
configuration; however, this would require locking a specific memory area in physical memory,
and would be plainly bad practice from Windows ring-0 development perspective.

2

user address space

kernel address space

ffffffff

80000000

00000000

user address space

kernel address space

non-addressable space

ffffffff‘ffffffff

ffff8000‘00000000

00007fff‘ffffffff

00000000‘00000000

Figure 1: Microsoft Windows address space layouts in 32-bit and 64-bit modes.

it first copies the “shared” buffer into a kernel-mode allocation and uses the
locally saved data for further processing. Since the kernel routine in question
has exclusive ownership over the locally allocated buffer, data consistency and
access races are no longer a concern.

As a direct outcome of the client — server architecture in user-mode appli-
cations interacting with the outside environment, moving data back and forth
between the two types of memory regions happens all the time – ring-3 code
only implements the program execution logic, while every interaction with files,
registry, window manager or otherwise anything else managed by the operating
system essentially boils down to calling into one of several hundred predefined
kernel functions known as “system calls”. Exhaustive lists of syscalls supported
by each NT-family kernel since 1993 are available for reference[17][16].

Passing input parameters to system call handlers in both 32-bit and 64-bit
versions of Windows is typically achieved as follows: the application pushes all
necessary parameters on the user-mode stack similarly to invoking a regular
routine using the stdcall or cdecl calling convention. After loading the ser-
vice identifier into the EAX register, the code executes one of the int 0x2e,
sysenter or syscall instructions, consequently switching the Code Privi-
lege Level to 0 and transferring code execution into a generic syscall dispatcher
(namely nt!KiFastCallEntry on modern Windows platforms). By using
information stored in an internal “argument table”, the dispatcher obtains the
number of function parameters expected by the specific system call and copies
n∗{4, 8} bytes (depending on the bitness) from the user-mode stack into the lo-
cal kernel-mode one, consequently setting up a valid stack frame for the handler
function, which is called next.

By doing the above, the generic syscall dispatcher prevents any memory-

3

sharing problems for the top–level information passed in by the user-mode caller
– as each input parameter is referenced once while being captured and moved
into the ring-0 stack, the syscall handlers themselves don’t have to get back to
user-mode to fetch their arguments or otherwise be concerned about the con-
sistency of parameters over time. However, top-level parameters are very rarely
used to represent actual input data – instead, they are commonly pointers to
information (such as strings or other compound data types) stored in complex
structures such as UNICODE STRING or SECURITY DESCRIPTOR. An exam-
ple of passing an OBJECT ATTRIBUTES structure to a system call handler is
illustrated in Figure 2.

kernel address space

user address space
OBJECT_ATTRIBUTES

kernel stack

user stack

parameter list

ULONG

POBJECT_ATTRIBUTES

BOOLEAN

HANDLE

HANDLE

parameter list

ULONG

POBJECT_ATTRIBUTES

BOOLEAN

Figure 2: Example of system call parameter pointing back to user-mode.

The generic dispatcher is not aware of the specific types of data passed
through parameters – therefore, all further fetches of memory pointed to by
pointers in arguments are the responsibility of each system call handler. This
opens up room for potential vulnerabilities – if any of the hundreds user-facing
system calls or other code paths (e.g. IOCTL handlers in device drivers) lack
proper transferring of input ring-3 memory regions to exclusively owned ring-0
buffers, then causing inconsistency in between subsequent memory reads can
take a local attacker anywhere from a denial of service up to a local elevation

4

of privileges.

2 Race conditions in interactions with user-mode
memory

Given what we already know about problems related to processing input data
residing in the user-mode portions of virtual address space, let’s explicitly state
the erroneous condition we discuss in this paper. We are looking for consistent
code paths (syscalls, IOCTL handlers etc.) referring to a specific user-mode
address more than once in the same semantic context. For a single 32-bit input
value referred to as x, a typical bug reveals itself in the following scenario:

1. Fetch x and establish an assumption based on its value.

2. Fetch x and use it in conformance with assumption from point 1.

3. Fetch x and use it in conformance with assumptions from points {1, 2}.

4. Fetch x and use it in conformance with assumptions from points {1, 2, 3}.

5. . . .

We can classify each assumption made by a potentially vulnerable piece of
code as belonging to one of two groups: directly and indirectly related to the x
value. A direct assumption against the value of x is usually a result of sanity
checking, i.e. verifying that the value meets specific criteria such as divisibility
by two, being acceptably small or being a valid user-mode pointer. An example
of directly enforcing specific characteristics over an input value is shown in
Listing 1 in the form of a vulnerable Windows kernel-mode C code snippet.

Listing 1: Double fetch after sanitization of input value.

PDWORD *lpInputPtr = /* controlled user-mode address */;
UCHAR LocalBuffer[256];

if (*lpInputrPtr > sizeof(LocalBuffer)) {
return STATUS_INVALID_PARAMETER;

}

RtlCopyMemory(LocalBuffer, lpInputPtr, *lpInputPtr);

Cases such as the one above can be thought of as true examples of time of
check to time of use bugs, since both ”check” and ”use” stages are found in the
actual implementation. Obviously, operating on data types other than integers
(such as pointers) can also be subject to time of check to time of use issues –
an instance of a ProbeForWrite(*UserModePointer, ...) call can be
equally dangerous from a system security standpoint.

The other type of assumption frequently established while making use of
user-supplied data can be observed when a value is taken as a factor for setting

5

up specific parts of the execution context, such as allocating a dynamically-
sized buffer. In this case, no specific properties are directly enforced over the
value in question; instead, certain relations between objects in memory are set
up. Although no explicit sanitization takes place in the routine, breaking these
implicit assumptions by changing the value of a supposedly consistent user-
mode variable can nevertheless lead to serious issues such as exploitable memory
corruption conditions. Listing 2 shows an example snippet of Windows device
driver code which ties the size of a pool-based buffer to a value residing within
user-mode, and later reuses that number as a parameter in a RtlCopyMemory
call, effectively introducing a potential pool-based buffer overflow vulnerability.

Listing 2: Double fetch while allocating and filling out a kernel pool buffer.

PDWORD BufferSize = /* controlled user-mode address */;
PUCHAR BufferPtr = /* controlled user-mode address */;
PUCHAR LocalBuffer;

LocalBuffer = ExAllocatePool(PagedPool, *BufferSize);
if (LocalBuffer != NULL) {
RtlCopyMemory(LocalBuffer, BufferPtr, *BufferSize);

} else {
// bail out

}

Regardless of the exact type of assumption that user-land memory race con-
ditions make it possible to violate, they can pose a significant threat to the
security posture of a Windows-driven machine. While no such vulnerabilities
are known to be exploitable remotely due to the fact that none of the remote
clients have direct control over any of the local processes’ virtual address space,
we have observed that nearly every such issue can be taken advantage of locally,
i.e. assuming that the attacker already has access to the machine through an
existing account in the operating system.

In order to make the transition from a race condition to an information
disclosure or memory corruption, further leveraged to execute arbitrary code,
the attacker is required to “win the race”, i.e. insert specially crafted data (often
a 32-bit or 64-bit integer) into the memory region reused by the vulnerable kernel
routine, and do it exactly in between the moment an assumption is established
and usage of the data capable of breaking that assumption. For most real-life
security flaws, this effectively boils down to targeting the time frame between
the first and second ring-0 access to the memory in question, also referred to as
the race condition time window further in this paper.

The size of the time window is typically measured in the total number of
instructions executed between two subsequent accesses to the same memory
area (a CPU-agnostic approach) or alternatively the time / cycles it takes to
execute those separating instructions. Intuitively, the larger the window, the
more probable it is to win the race in any particular attempt. As shown in the
Case Study section, the time frames available to an attacker can vary from one
to hundreds of instructions depending on the nature of the issue in question.

6

The fundamental problem in making practical use of race condition vulner-
abilities is how strictly they are bound to minimal timings, the task scheduling
algorithm implemented by the kernel and other countless characteristics of the
execution environment (such as number of logged in users, running applications,
CPU load, network traffic, ...) that all affect how the microprocessor’s compu-
tation resources are shared across threads. Fortunately, failed attempts to win a
race rarely cause any damage to the target software execution flow, thus allow-
ing multiple attempts per second to be carried out before the goal is eventually
accomplished.

A simplified version of the context switch order enabling an attacker to
successfully exploit a double-fetch vulnerability on a single core hardware con-
figuration is shown in Figure 3.

mov edx, dword ptr [ebp - BufferSize]
push PagedPool
push [edx]
call nt!ExAllocatePool
test eax, eax
jz bail_out

Thread 0, CPU 0

push [edx]
push dword ptr [ebp - BufferPtr]
push eax
call nt!RtlCopyMemory

Thread 1, CPU 0

xor dword ptr [BufferSize], 0x80000000
jmp $ - 10

context switch

context switch

} time window

BufferSize: ds:[0x00401280] = 0x1000

BufferSize: ds:[0x00401280] = 0x80001000

Figure 3: Context switch order allowing exploitation of a double-fetch vulnera-
bility on a single CPU.

With just a single logical CPU, it is not possible to flip bits in the repeat-
edly fetched memory region truly in parallel with the affected kernel function.
Therefore, it is essential that the same final effect is achieved by having the
system task scheduler to preempt the thread residing in ring-0 within the time
window between two subsequent fetches, and transfer code execution to attacker-
controlled code. Considering that user-mode applications have rather limited
means of controlling the scheduler’s behavior (mostly consisting of tampering
with priority classes and thread spraying), the size of the attack window plays
a crucial role in assessing the exploitability of any such race condition. The
Exploitation section discusses several techniques capable of improving the odds

7

of winning a race on a single CPU platform.
The situation is significantly more favorable to an attacker on hardware

configurations including two or more logical CPUs (due to multiple physical
CPUs, or more popular in modern hardware multiple cores and/or the Hyper-
Threading technology), which seem to cover a great majority of both desktop
and server platforms used at the time of this writing. In this scenario, an at-
tacker can in fact utilize multiple cores to ensure that the memory being raced
against is simultaneously processed by the vulnerable kernel routine and mod-
ified by other malicious threads with distinct core affinity masks. Reliability-
wise, this change makes a huge difference, as the available time window no
longer denotes a range of code paths within which execution control must be
transferred to an attacker’s thread, but instead describes the time frame during
which a specific instruction (e.g. XOR or MOV) must be executed in parallel
on a different processor. If the memory operation is plainly looped in the flip-
ping thread (i.e. the thread responsible for continuously flipping bits in the
targeted value), it becomes possible to achieve a reasonably high ratio of race
wins per second even for the smallest time windows imaginable. In general,
we believe that while certain race conditions in the kernel can be concerned as
non-exploitable on single-core platforms, the availability of at least one more
physical core makes any such issue fully exploitable. One example of practical
exploitation of an extremely constrained vulnerability is addressed in the Case
study section.

Figure 4 illustrates the optimal thread assignment and code flow granting
successful exploitation using two logical CPUs to conduct an attack.

mov edx, dword ptr [ebp - BufferSize]
push PagedPool
push [edx]

call nt!ExAllocatePool
test eax, eax
jz bail_out

push [edx]
push dword ptr [ebp - BufferPtr]
push eax
call nt!RtlCopyMemory

Thread 0, CPU 0 Thread 1, CPU 1

xor dword ptr [BufferSize], 0x80000000
jmp $ - 10{time window

Figure 4: Example task scheduling allowing exploitation of a double-fetch vul-
nerability on two physical execution units.

While potentially more difficult to exploit when compared to the typical,
direct memory corruption issues such as buffer overflows, race conditions in in-
teracting with user-mode memory are also believed to be non-trivial to find.
According to the authors’ knowledge, there are currently no publicly available
tools capable of detecting the specific class of problems in operating systems’

8

kernels. Processing certain types of data several levels deep into the NT ker-
nel image frequently involves operating on both user and kernel-mode memory
buffers at the same time, thus spotting the usage of a single ring-3 region in
multiple places within a syscall might turn out harder than it appears (not to
mention it is a dubious task). This might explain why – despite Microsoft being
well aware of the presence of the vulnerability class in the Windows kernel – a
great number of trivial race conditions have remained under the radar and were
only fixed in 2013 after being detected by Bochspwn.

Double-fetch security flaws are relatively new and unique in the world of
Microsoft; however, they otherwise have a rather long history and have been
discussed multiple times in the context of other operating system’ security. The
next section outlines some of the work that has already been done in the past
in the area of hardening user/kernel memory interactions.

2.1 Prior research

Until February 2013, the only publicly discussed instance of a double fetch vul-
nerability in the Windows kernel that we are aware of was CVE-2008-2252, a
bug reported by Thomas Garnier back in 2008 and fixed by Microsoft as part of
the MS08-061 security bulletin. The nature of the vulnerability was apparently
unique enough to warrant a separate post on the Microsoft Security Research
& Defense blog written and published by Fermin Serna on the Patch Tuesday
itself[6]. Although the bug represented a fresh type of issue that could have
been found in the kernel with relative ease, the incident remained a one-off
event and didn’t seem to have any visible consequences. In addition to the blog
post, another short article regarding issues in capturing input data from kernel
mode was published by Jonathan Morrison[10], a developer in the Microsoft’s
Core Operating Systems group in 2008, which makes it clear that the vendor
was in fact internally aware of the class of problems.

Time of check to time of use (toctou in short) vulnerabilities appear to be
better audited for in the Linux kernel5 – one of the most recent and public in-
stances of the discussed type of bug was reported by Alexander Viro in 2005[5].
The flaw was found in the implementation of a sendmsg syscall and effectively
allowed for a stack-based buffer overflow to occur, thus having significant secu-
rity implications. An in-depth write up covering the exploitation process was
provided by sgrakkyu and twiz in the Attacking the Core: Kernel Exploiting
Notes Phrack article in 2007[31].

Further, fundamentally similar attack vectors exist in the Linux kernel due to
the fact that it supports an otherwise uncommon user-mode ability to trace and
control system call invocations for other processes in the system. The feature
is widely used for numerous security-related purposes, such as monitoring the
performance of known malicious applications, sandboxing renderer processes for

5Note that it is not clear whether Linux is in fact more robust than other operating system
kernels when confronted with Bochspwn, as the tool has not been used against any kernel other
than Windows itself. The results of further testing involving different software platforms are
going to be published shortly.

9

common attack targets or emulating a chroot environment6. While it can be
used to effectively improve the security posture of the execution environment,
it also comes with potential risks – if not implemented carefully, the ptrace-
ing process could allow for inconsistency of the syscall parameters in between
the time of custom sanitization and the time of having them processed by the
kernel itself. The problem was discussed as early as in 2003 by Tal Garfinkel[32]
(Section 4.3.3, “system call races”), Niels Provos in 2004[28], Robert N. M.
Watson in 2007[30] and many more.

We are currently not aware of any relevant research performed in this area
for BSD-based or any other operating systems.

3 The Bochspwn project

Historically, the primary Windows user/gdi device driver (win32k.sys) has
been one of the most prominent sources of local security issues identified in
the Windows kernel, with a volume of vulnerabilities strongly exceeding those
in the kernel image or any other default driver in the operating system. As
a result, the implementation of various potentially sensitive features found in
the module are subject to regular assembly-level code reviews by security pro-
fessionals around the world. While going through the implementation of an
internal win32k!SfnINOUTSTYLECHANGE routine in 2008, we have identified
what appeared to be a typical example of a double fetch bug7. While further
investigation of the finding was dropped at the time, the very same issue was
rediscovered in October 2012 and examined in more detail. Once exploitability
of the bug was confirmed, we further determined that the very same pattern
was shared across 26 other internal win32k.sys functions. As much as the
existence and volume of the issues surprised us, we decided to start a large ef-
fort focused on identifying other potential double-fetch vulnerabilities across the
overall codebase of Windows ring-0. The following subsections discuss why we
eventually decided to pursue a dynamic approach, and how it was implemented
using the instrumentation API provided by the Bochs x86-64 CPU software
emulator.

3.1 Memory Access Pattern Analysis

While manual code audits allows one to successfully discover some bugs of the
double-fetch class, it is both time consuming and does not scale well. Hence,
in order to effectively identify such vulnerabilities, we decided to develop a
set of tools that would allow us to cover vast areas of kernel-mode code while
maintaining a low false positive ratio.

As explained earlier, the double-fetch vulnerability class manifests itself with
two distinct same-size memory reads from the exact same user-mode memory

6See the PRoot project – http://proot.me/
7A case study, including a complete exploitation process of the vulnerability is found in

Section 5.1, CVE-2013-1254

10

location, with both read events taking place within a short time frame. The
pattern can be detected using both static and dynamic (runtime) analysis of
the operating systems kernel and kernel-mode drivers. While the first solution
offers excessive coverage including rarely used areas of code, we have chosen to
follow the dynamic analysis model due to the shorter tool development period
and generally simpler design, as well as the existence of open source software
which could be easily modified to facilitate our needs.

Looking at the problem from a dynamic analysis perspective, one crucial
requirement enabling one to discover the said pattern is the ability to monitor
and log memory reads performed by an operating system.8 – the task can be
achieved in several different ways, as further discussed in the Design section.

3.2 Double-fetch pattern

Defining the double-fetch pattern as simply two consequent reads of the same
memory location is not in fact sufficient to achieve satisfying results; instead,
it is required to define the pattern in greater detail. The general conditions a
memory access must meet in order to potentially manifest or otherwise be a
part of a double-fetch vulnerability are as follows:

• There are at least two memory reads from the same virtual address.

• Both read operations take place within a short time frame (not necessarily
expressed in time units).

• The code instantiating the reads must execute in kernel mode.

• The virtual address subject to multiple reads must reside in memory
writable by ring-3 threads (i.e. user-mode portions of the address space).

The following subsections carefully describe each of the points listed above,
including Windows-specific implementations of the constraints’ verification and
their overall influence on the volume of false positives they might yield.

3.2.1 Multiple memory reads from the same address

The essence of this point is rather self explanatory; however, it still leaves the
relations between the sizes of subsequent memory accesses undetermined. As
previously mentioned, it is important that both values fetched during the mul-
tiple reads are used in the same semantic context, i.e. are assumed to be equal
across the memory references. In typical C code, the four most commonly ob-
served reasons for accessing memory are:

1. Referencing a single variable or a pointer to one.

2. Referencing a structure field.

8Technically, monitoring references to virtual memory is the desired approach, as only
monitoring physical memory access would increase the complexity of the design.

11

3. Referencing an array.

4. A combination of the above, e.g. accessing a structure field within an
array.

In all of the above cases, the code operates on an abstract object of simple
type – an integer (signed or unsigned, normally between one to eight bytes long)
or a floating point number (normally between four to ten bytes). If the high
level C code references the same object twice, it must have the same type in
both cases, thus both reads are always of the same size. On the other hand,
experiencing consecutive, differently-sized reads from the same location may
indicate any of the following:

1. The code attempts to reference union fields, which are aligned at the same
offset, but have different sizes. This is an extremely uncommon scenario
while interacting with user-mode memory.

2. The code invokes a function operating on memory blobs, such as memcmp
or memcpy. In such case, the size of each particular read used to move or
compare the bitstreams are implementation-specific and can be different
from the sizes of particular fields of a structure or array subject to the
memory operation.

3. The first read from a memory location is purposed to verify that the virtual
address is backed by physical memory, e.g. a special, inlined version of a
ProbeForWrite function call, such as the one presented in Listing 3.

Listing 3: Input address sanitization found in NtAllocateVirtualMemory

PAGE:0061A838 mov ecx, [ebp+AllocationSize]
PAGE:0061A83B mov eax, ds:_MmUserProbeAddress
PAGE:0061A840 cmp ecx, eax
PAGE:0061A842 jb short loc_61A846
PAGE:0061A844 mov ecx, eax
PAGE:0061A846
PAGE:0061A846 loc_61A846:
PAGE:0061A846 mov eax, [ecx]
PAGE:0061A848 mov [ecx], eax

In case of the first item, accessing different union fields which happen to
reside at the same location does not comply with the “same semantic context”
rule, and therefore is not interesting. Similarly, referencing a memory area for
the sole purpose of verifying that it exists rather than fetching the underlying
value cannot be part of a double-fetch vulnerability. Consequently, two respec-
tive reads from the same location are only considered a potential issue if both
have equal length, or at least one of them originates from a standard C library
memory handling function.

Even still, following the above rules does not guarantee exclusively true pos-
itives – please consider the example in Listing 4. As the code snippet illustrates,

12

it is required that the function not only fetches a value twice, but also makes
use of at least one common bit shared between the two numbers, which is not
the case in the example.

Listing 4: A same-sized false positive.

mov eax, [esi]
and eax, 0xff00ff00
...
mov eax, [esi]
and eax, 0x00ff00ff
...

In general, it is extremely uncommon for the kernel to fetch data from user-
mode in a single byte granularity – a great majority of array or structure fields
are at least two bytes in length. Given that many variations of the probing
functions include one-byte accesses, which won’t ever result in the discovery
of a double fetch but still increase the CPU and memory complexity of the
instrumentation process, we decided to disregard reads of size=1 entirely, thus
optimizing the project run time without sacrificing information regarding actual
vulnerabilities.

Furthermore, it is important to note the distinction between the read-only
and read-modify-write instructions. While the first group only reads memory
at a specific memory address and copies it into a specific place in the CPU
context (e.g. a register) so that it can be further operated upon, the latter ones
don’t actually reveal the fetched value outside of the instruction, but only use
it within the scope of the instruction. Examples of both groups can be mov
eax, [ecx] and and [eax], 0, respectively.

As a consequence of the fact that it is required for the fetched value to be
further used in the vulnerable assembly code beyond just the fetching instruc-
tion, none of the read-modify-write family commands can ever be a part of a
double fetch. One notable exception to the rule are instructions which while
don’t explicitly load the obtained number anywhere, still give some indications
regarding the value through specific CPU flags, such as the Zero Flag or Parity
Flag. For instance, the C code snippet shown in Listing 5 can in fact be com-
piled to a DEC instruction, which (although it belongs to the read-modify-write
group) could indeed be part of a double fetch, due to information about the
decremented number being zero is leaked through ZF and immediately used in
the subsequent conditional branch, as presented in Listing 6. We have deter-
mined that both gcc (version 4.7.2) with the -O3 flag and clang (version 3.2)
with the -O3 or -Os flags are capable of performing such optimizations; we be-
lieve the “Microsoft C/C++ Optimizing Compiler” could also generate similar
assembly code.

Listing 5: Code modifying a variable and testing its value at the same time.

if (!--(*ptr)) {
puts("Hello, world!");

}

13

Listing 6: Using a read-modify-write instruction to test a memory value.

8048477: ff 4c 24 08 decl 0x8(%esp)
804847b: 75 0c jne 8048489 <main+0x29>

3.2.2 A short time frame

It is somewhat intuitive what the “short time frame” term is supposed to mean
– if both reads are expected to have the same semantics in the context of the
vulnerable code, they must both be triggered within a shared call tree. For the
sake of an accurate implementation, we need to further specify the frame of
reference and how the “short” part is actually measured. As it turns out, using
actual time or instruction counts as indicators of whether two memory reads are
related might not be the best idea, given that modern multi-tasking operating
systems continuously switch between different execution units (threads), which
often results in changing the virtual address space to that of another process.

Considering what we already know about double fetches, it is apparent that
it only makes sense to limit the frame of reference to a single thread, e.g. examine
sequences of kernel-mode memory reads on a per-thread basis. In the Windows
operating system9, it is not sufficient to represent unique threads by only using
a pair of process and thread IDs, as both identifiers are extensively reused by
the operating system for different objects during normal execution, once their
previous occupants are terminated or exit gracefully. In order to ensure that
each separate thread living in the system is represented by a unique tuple,
we also use the thread creation time as the third value of the internal thread
identifier. No two threads are ever created with the same PID and TID at the
very same time.

Once the reference frame has been established, we can continue to further
specify the short time frame term. In our research, we initially assumed that
the distance between reads from the same address would be measured in the
number of distinct reads from kernel-mode code to user-mode memory. Using
this measurement method, a double-fetch vulnerability was be defined as two
reads separated by “at most N distinct reads to other addresses”, with N rang-
ing from 5 to 20. This solution, while clearly having certain cons, was able to
successfully identify several vulnerabilities in Windows kernel and win32k sub-
system module. However, there are several important downsides of this method:

1. A real double-fetch bug might go undetected if the two reads are separated
with N+1 or more other reads. The volume of undetected “real” positives
increases with smaller values of N .

2. A false positive might be yielded if both reads belong to two separate
consequent system calls, i.e. a return from one system call takes places,
and another system call is invoked, operating on the same or similar set
of parameters – both handlers would access the same user-mode memory

9The statement likely holds true for other common platforms, too.

14

area, but it would not be a double-fetch vulnerability due to different
semantic contexts. The volume of false positives increases proportionally
to the value of N .

To address the problem, we have conceived a different approach based on
defining the problem as “two reads taking place during the handling of a sin-
gle system call”. This method requires keeping a larger, variable sized cache
of memory reads, as well as implementing additional instruction-level instru-
mentation, in order to detect occurrences of the sysenter and sysexit (or
equivalent) instructions.

There are very few cases in which this method could throw false positives.
One theoretical example would be the event of a hardware interrupt preempting
the currently running thread without performing a context switch and attempt-
ing to read user-mode memory; this, however, makes little sense for an operating
system and is very unlikely to be observed in any real platforms.

While the approach only results in a manageable increase in the complexity
of the project, it has proven to be by far the most effective one throughout
several iterations of testing – as such, we successfully used it during four out of
five iterations carried out against Windows 7 and 8.

3.2.3 Kernel-mode code

In our research, we have defined the memory referencing code as any code
running with ring-0 privileges (i.e. at CPL=0) – including the kernel image
itself (e.g. ntoskrnl.exe or ntkrnlpa.exe), as well as all other kernel
modules (e.g. win32k.sys or third-party device drivers) and code executed
outside of any executable module (e.g. the boot loader).

The above definition is trivial to implement and cheap in execution time.
On the other hand, it is prone to certain classes of false positives:

• Vulnerable kernel-mode code might not necessarily be invokable (neither
directly or indirectly) by a process owned by a non-privileged user – this
makes the existence of such bugs uninteresting in the context of identifying
classic elevation of privilege vulnerabilities. However, in operating systems
that enforce signing of device drivers (e.g. Windows 7 64-bit in default
run mode), such issues can be still potentially used to carry out admin to
ring-0 attacks, and as such should not be considered a false positive.

• During the booting and system initialization phases, user-mode portions
of certain core processes (such as smss.exe in Windows) can be accessed
by kernel code for legitimate reasons. However, since it is not possible
for user-mode code to trigger the code areas at post-boot time, they are
beyond our interest.

Additionally, by narrowing the execution origin to ring-0, the following real
positives cannot be detected:

15

• System or administrator-owned processes interacting with an untrusted
process via shared memory sections.

• Hypervisor mode and SMM double fetches.

Note that both variants are very case-specific and extremely difficult to
accommodate in Bochspwn without introducing fundamental changes to the
project’s design.

3.2.4 User-controlled memory

The “user-controlled” memory portions are defined as part of the virtual space
which can be written to by ring-3 code. In case of Windows, this covers all
addresses from 0 up to the KUSER SHARED DATA region, which is the highest-
mapped page in the userland address space, and is not writeable in itself.

The most elegant way to verify the condition would be to look up the page
table entry for the virtual address in question, and use it to check if it is marked
as user-accessible. The problem with this solution is that it comes at a per-
formance cost – identifying the address descriptor structure in Bochs process
memory and testing it is an expensive operation. To address the problem, we
chose to make use of an extremely fast method specific to the memory layout
found in Microsoft Windows platforms; namely, test if the referenced address
is within user-mode virtual address space boundaries. In practice, this was ac-
complished by testing the most significant bit of the address on 32-bit systems,
and 16 most significant bits on 64-bit platforms.

One might argue that certain areas of kernel memory can be indirectly influ-
enced by user-mode code and as such could also create a base for double-fetch
problems. However, in such case, the vulnerability would be caused by the
lack or improper synchronization of access to kernel-mode structures, which is
a separate vulnerability class completely and not discussed in this paper.

3.3 Design

We have considered several possible approaches to create a system-wide mem-
ory monitoring tool, with each potential solution differing in performance and
invasiveness, as well as features offered “out of the box” and simplicity of both
design and implementation:

• Modifying the system exception handler to intercept memory references
by using either segment or page access rights. The method would require
introducing significant, internal modifications in the kernel of the operat-
ing system in question, which unfortunately makes it the least portable
option, especially difficult to implement for the Windows platform. At
the same time, it would have a minimal CPU overhead and would likely
allow to monitor an operating system on physical hardware.

• Making use of a thin hypervisor with similar means of intercepting memory
references as the previous idea. This method is less invasive in that it

16

does not require hacking kernels on a per-system basis. However, the
development and testing process of a functional hypervisor with extensive
logging capabilities is a complex and time consuming task; therefore, it
was considered unsuitable for a prototype we wanted to create.

• Employing a full-blown CPU emulator to run an operating system, and
instrument the memory references at the software level. While this was
certainly the worst solution performance-wise and also had several other
shortcomings (e.g. inability to test certain real hardware-specific kernel
modules such as modern video card drivers), it is the least invasive, most
elegant and simplest to quickly implement and test.

After considering the pros and cons of all options, we initially decided to
follow the full CPU emulator approach due to its overwhelming advantages.
Bochspwn, our system-wide memory monitoring tool, is based on the open-
source Bochs x86 emulator and takes advantage of Bochs’ instrumentation10

API. Even though the original goal of the project was to specifically target
double-fetch patterns, the overall design is flexible and not limited to this specific
class of software vulnerabilities.

Bochspwn operates in one of two modes:

• offline – all user-mode memory accesses originating from kernel mode are
saved to external storage at emulation run time, with the actual scanning
for double-fetch issues performed post-instrumentation. Since the instru-
mentation does not include the access pattern logic, it is more effective in
terms of CPU time used (and therefore allows the guest system to execute
with higher Instructions Per Second rates). On the other hand, the mode
heavily charges storage space, reaching tens or hundreds of gigabytes for
a single log file (see the Performance section for details).

• online – the double-fetch checks are performed at instrumentation run
time. As the double fetch identification algorithm is applied to memory
operations as they occur, only information about vulnerability candidates
is saved to disk, thus saving a lot of storage space. This is achieved at
the cost of increased CPU and memory usage, as it is required to keep
per-thread caches in memory and process them as needed.neglectable

While the designs of both modes share common parts, they are generally im-
plemented distinctively (e.g. offline-mode requires additional external tools for
log analysis). The following subsections discuss the different parts of Bochspwn
in more detail.

10The Bochs instrumentation feature is essentially a set of preprocessor macros, invoked by
Bochs during the emulation of different CPU events, such as fetching a new instruction from
memory or performing linear memory access. By attaching actual functions to some of the
macros, the instrumentation grants itself the ability to monitor certain portions of the CPU
functionality.

17

3.3.1 Common parts

Both modes share the same instrumentation interface, as well as code responsible
for gathering actual data.

Bochspwn instruments the two following Bochs events11:

• BX INSTR BEFORE EXECUTION – invoked prior to emulating the next
CPU instruction.

• BX INSTR LIN ACCESS – invoked for each linear memory access taking
place in the virtual CPU.

The first event is used exclusively to detect instances of the syscall and
sysenter instructions being executed. This is required to implement the
”short time frame” constrain of the double-fetch memory pattern – we use this
event to differentiate between distinct system call handlers. The event is either
logged to a file in case of the offline mode, or triggers a memory-access read
cache flush in the online mode.

The second instrumentation macro is the most important one for the overall
memory access pattern analysis, as it is the primary source of information re-
garding all memory operations taking place in the emulated environment. The
callback is provided detailed data about the memory access, such as the lin-
ear address, physical address, length of operation and type of access (one of
BX READ, BX WRITE, BX RW12). The event handler starts off by performing ini-
tial checks whose sole purpose is to discard the non-interesting memory reads as
soon as possible, prior to examining the operation in terms of a potential double
fetch situation. These checks implement some of the previously discussed dou-
ble fetch pattern constraints, and were selected based on their simplicity. The
criteria taken into account during initial verification are as follows:

• Check if the CPU is in 32 or 64-bit protected mode.

• Check if the access type is BX READ.

• Check if the access originates from kernel-mode code.

• Check if the access size is within desired limits (e.g. two to eight bytes).

• Check if the address resides within user-mode.

The remaining constrains – “same memory addresses” and “a short time
frame” – are tested in either a separate function in online mode, or by external
tools in case of the offline mode.

Furthermore, the common code is responsible for acquiring additional system-
specific information about the source of the linear memory access event. This
information is acquired by traversing the guest operating system memory and
reading certain kernel structures containing the desired data, such as:

11Also BX INSTR INITIALIZE and BX INSTR EXIT are used for initialization and deinitial-
ization purposes, though this it not relevant to memory analysis.

12The BX RW access type is set in case of read-modify-write instructions (e.g. inc [ebx]).
Certain faulty versions of Bochs incorrectly report the BX READ access type instead of BX RW.

18

• Process image file name, e.g. explorer.exe.

• Process ID.

• Thread ID.

• Thread creation time.

• Execution call stack information, including:

– Name of kernel-mode module, e.g. win32k.sys.

– In-memory image base address of the module.

– Instruction pointer expressed as a relative offset inside the module.

The purpose of acquiring the above types of information is twofold. Firstly,
the process ID, thread ID and thread creation time form a tuple used as a unique
thread identifier for the purpose of separating memory reads across different ex-
ecution units. Secondly, detailed data regarding the context of the read (such
as an accurate stack trace) prove extremely useful during the vulnerability cat-
egorization and deduplication stages, as well as for establishing the actual root
cause of an issue. For example, imagine that the second read in a double fetch
condition takes place inside of the memcpy function call – without information
about the caller’s location, it is often impossible to determine where the routine
was invoked, and thus what the vulnerability is.

An important thing to note here is that acquiring the above information is
obviously a costly process. Each read from guest memory requires, similarly
to a physical chip, translating linear addresses to physical memory addresses,
and then fetching the data from the Bochs’ memory module internal buffers.
In an effort to reduce the incurred overhead to a minimum, we implemented a
configurable limit over the maximum number of stack trace entries acquired for
each interesting memory read, and used values between 4 and 6 throughout all
testing iterations. Unfortunately, 64-bit versions of Windows no longer maintain
a stack layout allowing for the reconstruction of the complete call chain; in
order to achieve the effect, additional debugging information is required for
the executable module in consideration. As a result, we decided to only log
information about the current frame (reducing the amount of data available
while investigating detected problems) for 64-bit Windows.

3.3.2 Offline mode

Bochspwn in offline mode records all events meeting the initial criteria to a Pro-
tocol Buffer13 log file, with no additional processing of the gathered data. This
allows one to record an entire system session for a single time, and later exper-
iment with different log processing tools and memory access patterns, without
the need to repeat the time consuming data collection process. Additionally,

13https://code.google.com/p/protobuf/

19

in contrast to the online mode, there is a smaller CPU and memory footprint
during emulation, hence the initial stage is faster.

The final log, essentially being a system-wide stream of memory events,
requires further post-processing before it can yield meaningful results. For in-
stance, we have been extensively using the following filters over the output logs
prior to running the final double-fetch filter.

• Unique thread separation – separating the single input log into several
(typically 1000 to 4000) files containing events assigned to particular
threads.

• Removing noise – it turns out that certain Windows kernel device drivers
tend to trigger a large number of false positives and no actual bugs. In
such case, it might make sense to completely filter out entries related to
such modules early on, so that they are not a concern in further phases of
the process. One example of a noisy driver we encountered during testing
was the CI.dll executable image, which we decided to exclude from our
logs completely.

• Symbolization – presenting the output logs in a human-readable form,
found to be especially useful for debugging purposes.

Once the original log file is cleaned up and split into many smaller streams of
memory access information, those files become subject to the final filter (in the
form of a dedicated application), which examines all user-mode memory fetches
performed within each respective system call invoked by the examined thread,
in search for instances of the same address being used twice (using the same
length and meeting the other mandatory conditions, as described in the previous
sections). Once the processing of all files is complete, the output results require
further manual investigation, as a number of double fetch candidates can still
turn out to be false positives or duplicates of already known issues. An exem-
plary output entry yielded during the first testing iteration, which exhibited an
actual vulnerability in the win32k!SfnINOUTNCCALCSIZE routine fixed by
Microsoft in February 2013 is shown below:

20

------------------------------ found double-read of address 0x000000000581f13c
Read no. 1:
[pid/tid/ct: 00000478/00000684/01ce00c754b25570] { explorer.exe}

00000057, 000011fc: READ of 581f13c (1 * 4 bytes),
pc = 8fb21d42 [mov edx, dword ptr ds:[edx]]

#0 0x8fb21d42 ((00116d42) win32k!SfnINOUTNCCALCSIZE+0000021e)
#1 0x8fb27e6e ((0011ce6e) win32k!xxxDefWindowProc+0000009a)
#2 0x8fb4365b ((0013865b) win32k!xxxSendMessageTimeout+00000329)
#3 0x8fb43912 ((00138912) win32k!xxxSendMessage+0000002c)
#4 0x8fb1fa84 ((00114a84) win32k!xxxCreateWindowEx+00000d93)
#5 0x8fb2274f ((0011774f) win32k!NtUserCreateWindowEx+0000032a)

Read no. 2:
[pid/tid/ct: 00000478/00000684/01ce00c754b25570] { explorer.exe}

00000057, 000011fc: READ of 581f13c (1 * 4 bytes),
pc = 8fb21d9c [mov eax, dword ptr ds:[ebx]]

#0 0x8fb21d9c ((00116d9c) win32k!SfnINOUTNCCALCSIZE+00000278)
#1 0x8fb27e6e ((0011ce6e) win32k!xxxDefWindowProc+0000009a)
#2 0x8fb4365b ((0013865b) win32k!xxxSendMessageTimeout+00000329)
#3 0x8fb43912 ((00138912) win32k!xxxSendMessage+0000002c)
#4 0x8fb1fa84 ((00114a84) win32k!xxxCreateWindowEx+00000d93)
#5 0x8fb2274f ((0011774f) win32k!NtUserCreateWindowEx+0000032a)

3.3.3 Online mode

The online mode implements memory pattern scanning at guest OS run time,
providing real-time results, saving disk space and reducing the volume of host
I/O operations. At the same time, it requires a larger amount of memory
in order to store the per-thread cache of recent memory accesses, and takes
significantly more time to complete.

When a new system call invocation is detected through instrumentation of
the sysenter instruction, the list of pending memory read entries associated
with the current thread, which occurred in the previous syscall handler, is care-
fully examined for the presence of double fetch candidates – if any are found,
the information is saved to external storage. Once the examination is complete,
the current cache for that thread is flushed.

While online mode is significantly slower than the offline mode during data
gathering phase, it does not require a post-processing phase. However, due
to the fact that information about the reads is lost during the instrumentation
process, any additional filtering has to be implemented in Bochspwn itself, which
further pushes the CPU and/or memory overhead.

Overall, the online mode is suitable for long-running tests which would other-
wise consume extensive amounts of disk space, as well as for continuous testing,
e.g. using a driver or syscall fuzzer to increase the kernel code coverage.

3.4 Performance

In this section, we discuss the general performance of the project based on
results obtained during several iterations of instrumentation of the Windows
operating system, including memory and disk space consumption in different
modes of execution. The aim of this section is to provide a general overview of
CPU-level instrumentation efficiency; many of the numbers presented here are
approximate, and therefore should not be considered as accurate benchmarks.

21

3.4.1 CPU overhead

In comparison to an operating system running on physical hardware, run-
ning Windows within a full-blown x86-64 software emulator which is addi-
tionally instrumented is extremely slow; especially so because of the fact that
both BX INSTR BEFORE EXECUTION and BX INSTR LIN ACCESS intercepted
events are one of the most fundamental and frequently invoked ones.

Table 3.1 shows the difference in boot time of a Windows 7 32-bit Starter
Edition guest, measured from a cold boot to a fully loaded desktop on a Core
i7-2600 @ 3.40 GHz host. In case of the offline mode, this only covers the log
gathering step and none of the post-processing phases, nor double-fetch analysis.

Furthermore, Table 3.2 illustrates the volumes of different instrumented
events, compared to how many of them pass the initial checks. The test run
used to gather the information consisted of starting the operating system until
the desktop was fully loaded, manually issuing a shutdown command inside of
the guest, and ending the event counting once the guest reached power-off state.

Table 3.1: Time from a cold boot to a fully loaded desktop.

Description Time (mm:ss)
Vanilla Bochs 04:25
Bochspwn offline mode 19:21
Bochspwn online mode 35:48

Table 3.2: Number of events from cold boot to system shutdown.

Description Number of events
Instructions executed 20 160 778 164
sysenter or syscall instructions executed 804 084
Linear memory accesses 10 018 563 655
Linear memory accesses meeting initial criteria 32 852 185

The two following subsections cover the nature of differences observed be-
tween the online and offline mode overheads.

3.4.2 Offline mode overhead

As mentioned in the Design section, enabling the offline mode causes all events
which pass the initial criteria to be recorded to a log file, with each entry con-
suming approximately from 150 to 250 bytes. Due to a large amount of reads
passing the initial validation – reaching hundreds of millions of events on a well
tested system – the load of I/O operations and disk space usage are far from
being neglectable. Table 3.3 shows exemplary real-world sizes of the final log
files obtained in the process of instrumenting Windows 7 and 8.

With regards to I/O operations, Bochspwn uses the standard buffering op-
tions offered by the C runtime library and the operating system to minimize

22

Table 3.3: Event log disk space usage experienced during our experiments.

System Size of event logs Note
Windows 7 32-bit 13 GB Initial Bochspwn tests.
Windows 7 32-bit 78 GB Full guest test suite.
Windows 8 64-bit 136 GB Full guest test suite.
Windows 8 32-bit 107 GB Full guest test suite.

the performance loss due to disk writes. This could be further extended to use
asynchronous operations, or increase the buffering beyond standard limits.

As previously mentioned, the post-processing is specific to offline mode and
consists of a set of steps during which additional filtering takes place. Each of
the filtering steps needs to read the complete log from the disk at least once14,
process the input data and store the results back on the disk. During our
research, we used different filters whose completion time immensely depended
on the size of the log file(s) and could reach up to several minutes. Table 3.4
provides additional information on the particular filters’ processing complexity
and size of output data.

Table 3.4: Performance note on exemplary filters.

Filter Processing Output size
Unique-thread separation Linear Same as input log.
Removing certain events Linear Smaller than the input log.
Double-fetch scan Linearithmic Minimal.

To summarize, the offline mode trades off disk space and volume of disk
accesses in exchange for reduced CPU and memory overhead during the moni-
toring phase.

3.4.3 Online mode overhead

In contrast to offline mode, the online one uses external storage only to save
the final results (i.e. double fetch candidates), so the required disk space is
minimal, similarly to the amount of time spent on I/O operations. However,
this requires the steps that are normally found in the post-processing code to
be done real-time. This incurs additional overhead, both in terms of memory
(see Table 3.5) and CPU usage.

As shown in Table 3.1, Bochspwn online mode is roughly two times slower
than offline mode (including the I/O communications performed in offline), yet
it provides the results in real time and does not require neither excessive disk
space nor additional log processing steps.

14In case of smaller test logs, one can use either a RAM-disk or rely on in-memory file
caching offered by modern systems for faster read access.

23

Table 3.5: Memory usage peak for guest with 1024 MB of RAM.

Description Memory usage peak
Vanilla Bochs 1 085 MB
Bochspwn offline mode 1 086 MB
Bochspwn online mode 1 584 MB

3.5 Testing and results

Initially, only offline mode was implemented in Bochspwn and used in the ma-
jority of our research. The early tests consisted of starting the operating system,
running several applications available out of the box in Windows and shutting
the system down. Those steps would result in having a 10-15 GB log file gener-
ated, which was then enough to test if detection of the double fetch pattern works
in practice. As we already knew about the 27 previously discovered vulnera-
bilities in win32k.sys, we were able to reliably determine if the implemented
pattern was indeed correct.

Having established a first working implementation, we began to improve
the kernel code coverage by running various additional applications within the
guest (e.g. programs making use of the DirectX API), as well as the Wine API
unit-test suite[34] – as a result, this allowed us to cover additional system calls,
device driver IOCTLs and various other executable regions in the kernel address
space.

Furthermore, we added support for all Windows NT-family operating sys-
tems, including the 32 and 64-bit versions of Windows 8 and 64-bit version of
Windows 7.

So far, we have conducted five complete iterations of testing, and accordingly
reported the results of each phase to Microsoft (see table 3.6).

Table 3.6: A history of double fetch reports delivered to Microsoft.

Date Iteration Number of cases Note
2012-09-19 - 27 Original issues discovered manually.
2012-11-01 1 20 Windows 7 32-bit.
2012-12-09 2 7 Windows 7 32-bit.
2012-12-16 3 20 Windows 8 32-bit.
2013-01-21 4 20 Windows 8 64-bit.
2013-01-30 5 22 Windows 8 32-bit.

At the time of this writing, the following numbers of cases have been resolved
by the Redmond giant:

• In February 2013, Microsoft Security Bulletins MS13-016[19] and MS13-
017[20] addressed 32 Elevation of Privilege issues, with three more fixed
as variants.

24

• In April 2013, Microsoft Security Bulletins MS13-031[21] and MS13-036[22]
addressed four Elevation of Privilege issues.

• 13 issues were classified as Local DoS only.

• 7 more issues are either scheduled to be fixed or are still being analyzed.

• The remaining reports were deemed to be either not exploitable, duplicates
or were otherwise non-issues.

It is probable that further problems will be identified in future testing iter-
ations, provided that a more efficient instrumentation will be eventually devel-
oped, or the code kernel coverage will be significantly improved.

4 Exploitation

The Bochspwn project provides effective means of identifying potential prob-
lems in sharing input data between user and kernel-mode. Further manual
investigation helps to sieve the overall output report and find actual security
flaws; yet, even with precise information of where the bugs reside and how to
possibly trigger them, they are completely useless without a practical way to
exploit them. This section outlines the various techniques that we have discov-
ered or learned while reverse engineering and trying to take advantage of some
of our project’s findings – techniques that can be used to effectively compro-
mise the security of a Microsoft Windows platform. While some of the methods
described here are specific to races involving accessing ring-3 portions of the
virtual address space, others can prove useful for other types of timing and/or
scheduling-related problems.

It is important to note that winning a race condition, if one is found in
an operating system, doesn’t automatically grant you any superpowers in the
executive environment without further work. Instead, kernel races are best
thought of as gateways to actual violations which can be used in the attacker’s
favor, and winning a race only grants you the opportunity to exploit the specific
type of violation, depending on what kernel code assumption is broken during
the process. In that context, race conditions appear to be more complex in
exploitation than the more “deterministic” classes of issues, as they require the
attacker to prepare a strategy for both the race itself and post-race exploitation
of the resulting condition.

While the details of each violation introduced by a double-fetch bug can differ
from case to case depending on how the kernel uses the value raced against and
what assumptions it establishes, there are four outcomes that are observed most
frequently:

1. Buffer overflow – a result of inconsistency between the value used during
a sanity check or when allocating a dynamic buffer, and the number of
bytes actually copied into that buffer.

25

2. Write-what-where or a more constrained write-where condition – a re-
sult of inconsistency between the user-mode pointer used during sanity
checking (e.g. as a parameter to ProbeForWrite) and the one used as
destination for an actual memory operation.

3. Read-where condition – a result of insonsitency between the validated and
used input pointer, in case that pointer is only used for reading memory
and the leaked data can be transferred back into user-mode.

4. Read-garbage condition – a custom name for a situation where the con-
tents of a not entirely initialized kernel buffer are passed down to user
mode; caused by having the number of bytes filled in that buffer to be less
than its size (the opposite of a buffer overflow).

A majority of the above violations are commonly found and exploited as
stand-alone vulnerabilities; specifically, memory corruption issues such as buffer
overflows or write-what-where conditions have been subject to detailed analy-
sis in the past. Due to the apparent lower severity, the latter two items have
received considerably less attention from the security community; thus, we in-
cluded some considerations on how the leakage of specific regions of kernel ad-
dress space has a security impact comparable to the more invasive problems in
the Case study section.

In the following subsections, we will focus on techniques to improve the odds
of reliably stepping through the first phase of race condition exploitation, i.e.
winning the race itself.

4.1 Single CPU scenarios

Unlike ten years ago, it is currently rather difficult (if at all possible) to find
a personal computer with less than two or four cores on board. The situation
is similar in the case of most commercial virtualization services and physical
servers, both of which usually offer more than just a single processor to operate
on. While it is rather unlikely to find ourselves in a situation where it is required
to win a race condition on a single CPU configuration to compromise the security
of a modern platform, this section outlines some techniques facilitating one-core
exploitation.

As previously discussed, what makes it exceptionally difficult to successfully
exploit race conditions on platforms equipped with a single CPU is the lack of
true parallelism – we cannot in fact perform any operation “at the same time”
as the vulnerable routine, due to the linear way in which the overall environment
works. In this situation, the only means to inject a different value in memory
within the available time window is to have the kernel function preempted in
between of the two memory fetches of interest, and get code execution trans-
ferred to a controlled user-mode thread before the vulnerable ring-0 code is
resumed. As a result, successful exploitation must involve tampering with the
decision-making process of the scheduler.

26

In general, there are three possible reasons for a thread to be preempted by
the system scheduler within a specific code block:

1. The block issues an explicit call to NtYieldExecution or an equivalent
function, thus indicating that the thread has nothing to do at this point
in time and the scheduler can choose another thread to execute on the
processor.

2. The CPU time slice allocated for the thread exceeds, thus resulting in a
forceful transfer of code execution out of the thread back into the kernel-
mode scheduler in order to handle other threads in the operating system.

3. The thread issues an I/O operation that requires a long time to complete,
e.g. hits a memory area swapped out to disk, requiring the page fault
handler to restore the page in physical memory, typically consuming a
significant amount of time compared to normal cache-handled references
or even RAM fetches.

It is unusual for most potential race condition syscall targets to issue yield
calls, so we cannot rely on taking advantage of the first option. Performing
multiple attempts to win the race in the hope of having the thread preempted
in just the right time and transferred to the flipping thread is in fact a viable
solution in case of memory corruption violations which only require a single
race win to successfully escalate one’s privileges in the system, according to
experimental data. We have tested an exploit against one of the MS13-016
vulnerabilities discussed later in this paper (CVE-2013-1254) and found that
the average time period it takes to win the race inside of a single-core Windows
7 SP1 32-bit guest inside of VirtualBox, hosted by an Intel Xeon W3690 CPU @
3.46GHz is approximately 110 seconds. After upgrading the VM to four logical
CPUs and using a parallelism-aware exploit, we reached an average ratio of 16
wins per second. This implies that running an attack on a single core can be up
to 1750 times slower, but is still feasible if the attacker has reasonably unlimited
time during which to carry it out, and few wins are sufficient to fully compromise
the machine. Various additional techniques can be used to extend the available
time window, therefore improving the odds of having the vulnerable routine
preempted within the desired block of code. For details, see further sections.

Semi-reliable exploitation of kernel-mode race conditions similar to those
addressed in this paper was previously discussed by twiz and sgrakkyu during
their 24C3 presentation titled “From Ring Zero to UID Zero”[35]. The speakers
focused on exploitation scenarios when just a single CPU was available, and
came up with several interesting ideas to force the kernel to perform an I/O
operation while resolving a #PF exception generated upon accessing a swapped-
out page backed up by the pagefile or another file in the filesystem, e.g. by
pushing the target page out of RAM through spraying of the physical memory
with large amounts of irrelevant garbage. We haven’t found any trivial and fast
way to reliably and continuously swap a page of memory into the slow hard
drive storage, and we haven’t investigated this further. While the concept of

27

deterministically generating context switches in kernel mode is indeed tempting,
there are some fundamental problems related to some of the ideas presented six
years ago with regard to how modern computing works today, e.g. it is not very
common to see a shared machine with less than 8 or 12 GB of RAM and no
user-specific memory usage quotas in place.

While digging further into the specific algorithm of the scheduler on a single-
core machine would surely make an interesting research subject, we don’t find it
to be a direction of much practical value. In situations where utilizing just one
processor to carry out an entire attack is a necessity, following the steps discussed
in further sections (but running both racing and flipping threads within the one
available core) is expected to do the trick for a majority of scenarios you might
find yourself in.

4.2 Page boundaries

On a great majority of hardware platforms used today, time windows consisting
of several dozens, hundreds or thousands of instructions are more than enough to
carry out a successful attack against a race condition vulnerability. However, you
can also find instances of double fetch, where respective fetches are separated
by only one or two assembly instructions, forcing the attacker to struggle to
achieve a reasonable wins per second ratio (or even get a single hit at all). An
example of code suffering from an extremely constrained race condition in shown
in Listing 7.

Listing 7: A race condition with an attack window of two instructions.

MOV EDX, ds:[nt!MmUserProbeAddress]
MOV ECX, ds:[user-controlled address]

MOV EAX, [ECX]
CMP EAX, EDX
JA BAIL-OUT

MOV EAX, [ECX]

...
Operate on "EAX" as a sanitized user-mode pointer

In cases like the above, exploitation starts to get tricky even with multiple
cores at one’s disposal. A time window of just two instructions which don’t in-
voke context switches, don’t require interaction with external peripherals, don’t
trigger any interrupts and are implemented very efficiently by the processor
leaves us with just a few cycles during which specific bits of the user-mode
value must be flipped. In fact, the only part of the execution flow that we con-
trol here and could potentially use in our favor is the user-mode address stored
in the ECX register.

One technique to significantly delay the completion of an instruction using
a user-provided address to fetch more than one byte at a time is to place the
word, double word or quad word in between two adjacent memory pages (e.g.

28

at an address ending with fff on systems with 4 KB pages). Both reading
from and writing to such misaligned addresses causes the CPU twice the work
it normally does, as the operation involves querying the cache for two distinct
pages, performing two virtual address translations, fetching data from likely
distant locations in the physical memory, and so forth. While it would be intu-
itive to expect a 2-3x slowdown in the instruction execution time, experimental
results show that completion of this corner case can take up to 13 times the
time in which a well-aligned value would be fetched. A personal PC powered
by an Intel Core i7-3930K CPU and Windows 7 SP1 64-bit was used as the
test environment, running the mem access routine shown in Listing 8 with the
iter=1024 parameter 1024 times, and using the minimal timing as the result for
the specific offset within a region. The results of the experiment are shown in
Figure 5; please note that the tested code does not properly address numerous
CPU-level execution optimization techniques found in Sandy Bridge-E, such as
out-of-order, superscalar or speculative execution, and so forth. The numbers
provided here are specific to the testing methodology used and are primarily
provided for the sake of comparison with results yielded by other techniques.

Listing 8: Function used to perform memory access timing measurements.

void mem_access(void *addr, uint32_t *t1,
uint32_t *t2, uint32_t iter) {

__asm("mov ebx, %0" : "=m"(addr));
__asm("mov ecx, %0" : "=m"(iter));

__asm("mfence");
__asm("rdtsc");

__asm("mov edi, eax");
__asm("@@:");
__asm("mov eax, dword ptr [ebx]");
__asm("dec ecx");
__asm("jecxz @end");
__asm("jmp @@");
__asm("@end:");

__asm("mfence");
__asm("rdtsc");

__asm("mov ecx, %0" : "=m"(t1));
__asm("mov [ecx], edi");
__asm("mov ecx, %0" : "=m"(t2));
__asm("mov [ecx], eax");

}

The average time to access a dword at any of the 3904 in-page and in-cache
line locations was around 1.85 cycles (with small fluctuations), while values re-
siding at offsets in between cache lines (which was 64-bytes long for the machine
used) took double the time to be fully obtained (around 4 cycles) and 32-bit
numbers spanning across two virtual pages were determined to execute for ap-
proximately 25 cycles each; all timings were measured using a standard memory

29

0 3967 4031 4095 4159 4223
0

5

10

15

20

25

Offset within page

C
P

U
cl

o
ck

cy
cl

es

Figure 5: Cycle cost of 32-bit memory references at respective offsets within a
cached region.

allocation after ensuring that each of the tested regions was present in the L1
cache prior to the test. Considering that the CMP and JA instructions typically
consume around a single cycle on the same test machine, introducing the above
“optimization” resulted in a roughly 2500% time window growth.

While the observation can be successfully used to extend the available time
window by slowing down instructions in kernel-mode, it doesn’t necessarily have
to same effect on the flipping threads. In scenarios where the attacker desires
to use the time window to increase the raced value in memory, he can take
advantage of the little endian ordering used in the x86 architecture, causing
the more significant bits of the number to be stored at higher addresses. For
example, if the target value is a 32-bit pointer spanning across two pages with
two bytes in each of them, the malicious threads can cause the full 32-bit address
to continuously switch between user and kernel-mode by persistently xoring the
upper 16 bits of the value at the base of the second page against 0x8000. Making
use of the page boundary slowdown by employing two CPUs is better illustrated
in Figure 6.

While page boundaries appear to be most useful in constrained scenarios
where the memory address used is the only part of the context directly con-
trolled by the attacker, they can also prove functional in easier instances of
race condition bugs. In particular, it is worth to keep in mind that for a time
window consisting of n instructions fetching from independent user-mode mem-
ory regions, each of them can be used similarly to maximize the reliability of
our exploit.

30

page boundary

fffe 0000

0 8 16 24 32

Thread 0, CPU 0

mov eax, [ecx]

Thread 1, CPU 1

xor word [ecx], 0x8000

jmp $ - 5

Figure 6: The optimal exploitation scheme involving a page boundary.

4.3 Memory caching and write-combining

Experimental timing results in the previous section were highly affected by the
fact that all memory locations referenced during the benchmark were ensured
to be found in the CPU L2 cache. The fetch timings could have been further
increased if instead of prefetching the data into cache, we would do the oppo-
site – make sure that the cache buffer is filled with junk throughout the test.
However, we have found that instead of playing with internal CPU optimization
structures, it is far more effective to disable cache entirely for pages used in the
attack, forcing the processor to interact with the physical memory controller
in a synchronous manner, until the desired value is fully read / written to the
memory dice.

Non-cacheable private memory can be allocated by any user-mode applica-
tion in the Windows environment by using the PAGE NOCACHE flag as a pa-
rameter to the VirtualAlloc function. Internally, information about page
non-cacheability is encoded within one of the eight Page Attribute Table entries
(see Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A:
System Programming Guide, Part 1, Section 11.12 PAGE ATTRIBUTE TA-
BLE (PAT)), pointed to by the PAT, PCD and PWT bits the page table entry for
the specific memory region.

When we prevent the CPU cache from being used to boost up our memory
references, page boundaries no longer matter. As we communicate directly
with RAM to acquire the interesting memory contents, we now operate on the
granularity of (much smaller) physical memory blocks used by the underlying
hardware configuration. The size of a single physical memory block size on
the desktop PC used for previous tests was experimentally determined to be
64 bytes. On the other hand, the size of such blocks on a notebook driven by
AMD Turion 64 X2 TL-56 and two dices of DDR2 memory was only eight bytes.
The memory access timings for subsequent offsets within a non-cached page are
shown in Figures 7 and 8 for both discussed machines.

Based on the charts, we can draw two important conclusions. First, the

31

0 64 128 192 256
0

100

200

300

400

500

Offset within page

C
P

U
cl

o
ck

cy
cl

es

Figure 7: Cycle cost of 32-bit memory references at respective offsets within a
non-cached region, block size = 64 bytes.

0 64 128 192 256
0

100

200

300

Offset within page

C
P

U
cl

o
ck

cy
cl

es

Figure 8: Cycle cost of 32-bit memory references at respective offsets within a
non-cached region, block size = 8 bytes.

32

cost of fetching a 32-bit value from a properly aligned address on the test PC is
typically around 250 cycles, which is ∼13000% the cost of fetching the same piece
of memory from cache (∼1.85 cycles) and ∼1000% the cost of fetching it from
a boundary of two cache-enabled pages (∼25 cycles). This gives an attacker
an enormous edge while trying to win a race against such instructions. The
second important observation is that similarly to page boundaries, references to
memory at block boundaries also take much longer that they normally would.
Indeed, it is clearly visible that two separate blocks of memory must be acquired
from RAM instead of one, as the timing relation between aligned and misaligned
accesses is almost exactly 1

2 .
Given all the above, the most sensible option is to use a non-cached, mis-

aligned memory address when confronted with a constrained vulnerability which
doesn’t provide us with other choices as to how to slow the kernel down and win
the race. As the physical memory block sizes can differ from target to target,
it is safe to stick with page boundaries, granted that the page size on any x86
and Windows driven machine will always be divisible by the block size.

It is also worth to mention the existence of another page attribute of potential
interest – write-combining – supported both by Intel and the Windows API
interface (see PAGE WRITECOMBINE). The attribute was designed specifically
for interacting with external devices having some of the virtual address space
mapped directly to their internal memory (such as VRAM), and implemented in
order to reduce the volume of back-and-forth communication with that device by
packing large chunks of continuous read or write operations into single packets.
Due to the nature of the data going through write-combine mapped memory,
it is not subject to caching – therefore, it can be used interchangeably with
the NO CACHE flag during race condition attacks. Our tests have shown that
neither attribute is particularly more effective than the other, as they both result
in roughly same access timings. It is possible that some specific characteristics
of how x86 processors implement the write-combining mode could be used in
the attacker’s favor; however, we haven’t further investigated the feature.

4.4 TLB Flushing

The process of fetching data from virtual memory consists of several major
stages, some of which can be manipulated in non-trivial ways. While forcing
the CPU to double the required work by reading values from across two mem-
ory pages and putting them directly in RAM provides us with a significant
advantage at virtually no cost, there are still portions of the process that can
be influenced by a user-mode application. Before a processor can read the ac-
tual bytes from either cache or physical memory, it must know where to look
for them. Code running in Protected or Long Mode uses an additional layer of
memory addressing called virtual addressing, causing the processor to perform
address space translation in order to obtain a physical address of the region ref-
erenced in assembly code. As the structures describing current virtual address
space reside in RAM and therefore are very expensive to read, all x86-family
processors implement a special address translation cache called “Translation

33

Lookaside Buffer”. As TLBs usually cover most or all of the pages referenced
by a thread within its time slice, the performance cost of address translation
is usually disregarded, being negligibly small (within a few cycles). As you
can imagine, user-mode threads in Windows do have indirect control over the
contents of TLB, and even better, they can remove specific entries out of the
translation cache.

Mangling with the internal state of TLB is beyond the scope of the pa-
per; however, if you are interested in cache-related security considerations, refer
to the “Practical Timing Side Channel Attacks Against Kernel Space ASLR”
paper[29]. Flushing the lookaside buffer, on the other hand, is extremely easy, as
it can be achieved with a documented Windows API EmptyWorkingSet func-
tion. The concept of process working sets describes the set of pages mapped
within the virtual address space of a particular process which are found in
physical memory at a given time (i.e. are not swapped out). The aforemen-
tioned API allows processes to instruct Windows to remove as many pages from
a process working set as possible, consequently freeing up physical memory
for other applications to use (in a sense, this functionality is the opposite of
the virtual memory locking mechanism available through VirtualLock and
VirtualUnlock). As the documentation states[26], pages which do not be-
long to at least one working set are not automatically removed from RAM, but
rather sit there until the system needs to free up some resources. As a result,
calling the EmptyWorkingSet gives no guarantees of which or whether any
pages are indeed going to be transferred to a hard drive – what it does guaran-
tee, though, is that the TLB entries for the swapped out pages, or potentially
the entire TLB cache altogether is going to be flushed. A similar (but more di-
rected) effect can be achieved by calling the VirtualUnlock function against
a non-locked memory region, as the documentation states:

Calling VirtualUnlock on a range of memory that is not locked re-
leases the pages from the process’s working set.

The interesting property of removing all or a specific entry from TLB is that
every first access to a memory page no longer found in the cache forces the CPU
to perform a complete page walk, that is traverse the Page Table structures in
RAM in search of the specific page entry, in addition to the normal fetching of
value from memory. On 64-bit platforms where a typical Page Table consists
of four layers, this adds up to four separate reads from RAM, plus the one for
the value itself; if attacking Protected Mode, there is one read less15. Note that
while some of the Page Table entries may be longer than the size of the native
CPU word, each fetch from physical memory obtains data of the RAM native
block size (always observed to be at least 8 bytes), which is sufficient to read an
entire Page Directory or Page Table entry.

A comparison of experimentally acquired memory access timings of reads
from cached memory, non-cacheable memory and non-cacheable memory with

15The exact number of Page Table layers can be different depending on the specific con-
figuration of the victim machine (e.g. if the Physical Address Extension or Large Pages are
enabled); in reality, the number can vary from one to four layers.

34

0

500

1,000

1,500

2,000

2,500
C

P
U

cl
o
ck

cy
cl

es

cached, aligned
cached, non-aligned
no-cache, aligned
no-cache, non-aligned
no-cache, no-tlb, aligned
no-cache, no-tlb, non-aligned

Figure 9: Cycle costs of 32-bit memory references with different attributes ap-
plied to the memory region and its address.

prior TLB flush performed is presented in Figure 9. It is clearly visible how
the “no-tlb” memory operation requires roughly five times the cycle count of a
single RAM read performed during the second test. Also, using a page boundary
turns out to be once again quite helpful, as it requires two page walks to be
done instead of just one. While this process could be optimized as the Page
Table paths usually greatly overlap for two adjacent pages, it is apparent that
the tested Core i7-3930K CPU doesn’t implement special handling of this corner
case.

While invalidating the TLB can give an attacker a significant edge in specific
cases, it is in fact much more expensive than the other techniques explained so
far. Placing an address in between two pages requires a single pre-calculation;
marking memory as non-cacheable only takes a single VirtualProtect call –
on the other hand, ensuring empty TLB needs either one of the SetProcessWo-
rkingSetSize, EmptyWorkingSet or VirtualUnlock functions to be used
before each call to the vulnerable kernel routine, consequently decreasing the
total number of races we can attempt per second. Below follow the calculations
of at which point using the technique can increase the total number of cycles
comprising the time window per second.

Let c be the CPU clock frequency, w the length of the original time window
in cycles, e the number of extra window cycles provided by the TLB flush, x
the cycle cost of a single race attempt (i.e. invoking the vulnerable syscall) and
t the additional time incurred by the TLB-flushing system service. Assuming
that we have the CPU entirely for ourselves, the total time window size per
second in a normal scenario can be expressed as:

w

x
× c

x
=

wc

x
(1)

35

With TLB flushing, both the time window and total time spent in kernel
mode per attempt increase, therefore changing the time window per second to:

w + e

t + x
× c

t + x
=

(w + e)c

t + x
(2)

In order for the technique to be beneficial during a practical attack, the
(2) > (1) condition must be met:

(w + e)c

t + x
>

wc

x

(w + e)cx > wc(t + x)

cwx + cex > ctw + cwx

ex > tw
e

t
>

w

x

The result is rather intuitive – the window size increase
additional cost ratio must be greater

than existing time window size
existing time cost . Before making a decision on whether the technique

is beneficial for the attack in your specific scenario, one should carefully measure
all timings found in the equation in order to determine if the overall time window
per second grows or decreases with the change.

4.5 Thread management

The techniques and observations discussed in the previous sections allow an
attacker to maximize the extent of the race time window; attributing the correct
number and types of threads to CPUs available on the target machine ensures
that the time window (however big or small) is being raced against in the most
optimal way. Properly distributing work across the cores is essential to effective
exploitation.

The single-core scenario has already been addressed – from this point for-
ward, let’s assume that we can operate on n logical CPUs, n ≥ 2. The first and
foremost observation to emphasize is that since multiple logical CPUs are in-
volved in the process, it is no longer required to trigger as many context switches
as possible, but rather the opposite – make sure that as much CPU time is spent
executing our payload instead of the operating system thread scheduler. When
no CPU quotas are set up in the system, any thread executing an infinite loop
with no “yield” requests in between will by default receive the maximum share
of CPU time that Windows can afford to assign to the thread. Therefore, the
first rule of thumb for local race condition exploitation is to only run a single
thread on every available logical CPU.

At this point, we need to make four further, important decisions: which
thread type (racing or flipping) should be scheduled for each CPU, which or
how many distinct memory areas should be targeted by these threads, what
attributes are to be assigned to the memory pages and finally, if there are any

36

cache enabled cache disabled

106

107

W
in

s
p

er
se

co
n

d
[rx, fx][ry, fy][rz, fz]

[rx, fx][rx, fx][rx, fx]

[rx, rx][rx, fx][fx, fx]

[rx, ry][rz, fx][fy, fz]

[rx, fx][fx, ry][fy, fy]

[rx, fx][fx, fx][fx, fx]

[rx, rx][rx, rx][rx, fx]

Figure 10: Number of race condition wins for each threat assignment strategy,
on six Hyper-Threading enabled cores (three physical cores).

variations of the different settings that could further improve the exploitation
reliability. We are going to approach each of the decisions separately.

We have performed a number of performance tests using different amounts
of racing / flipping threads assigned to different cores and targeting different
memory areas. The tests were conducted by using a custom application which
simulated the presence of a race condition vulnerability and counted the volume
of wins per second for each of the tested thread assignment strategy. While
running the tests, an interesting fact came up – it makes an enormous difference
whether two logical processors used for exploitation are on the same chip or
core (due to the Hyper-Threading technology) or not. As the next step, we
chose a representative set of results and presented them in Figures 10 and 11
for HT-enabled and physical separate processors, respectively. We used the
same testing machine equipped with an Intel Core i7-3930K CPU. Each tested
configuration should be read as follows: racing (i.e. invoking the vulnerable code
path) threads are denoted as r, flipping threads as f. The x, y and z subscripts
indicate different memory regions, e.g. where y and z are not used, all threads
were set to target a single memory location. In the former chart, logical CPUs
running within the same physical cores are grouped together in the legend.

Please note that the specific numbers obtained during the experiments can,
and will be different on any other software or hardware configuration you might
try – your mileage may vary. However, the relations in performance between
each pair of assignment strategies are believed to hold true for most platforms
seen today.

There are several far-reaching observations that can be inferred from the

37

cache enabled cache disabled

104

105

106

W
in

s
p

er
se

co
n

d
rx, fx, ry, fy, rz, fz
3× rx, 3× fx
rx, 2× fx, ry, 2× fy
rx, 5× fx
5× rx, fx

Figure 11: Number of race condition wins for each threat assignment strategy,
on six separate physical cores.

two charts. Most importantly, splitting all available processors into pairs of
(race, flip), each targeting a different memory region appears to generate by
far the best results out of all tested options, both with and without HT enabled.
Secondly, two logical CPUs in a single physical chip racing against each other
reach the highest race condition win rates when working with cacheable memory.
On the other hand, in case of six completely separate cores (HT disabled), it is
conversely most effective to target memory pages marked as non-cacheable and
therefore stored directly in RAM at all times.

We believe that the Hyper-Threading phenomenon can be explained as fol-
lows: each two logical CPUs on one physical core are most effective (performance-
wise, not exploitation-wise) when executing unrelated operations within differ-
ent regions of memory and therefore not blocking on each other. When running
two threads that persistently fetch and write to the very same memory cell,
the instructions cannot be ran in parallel, but instead have to wait until each
of them complete. In consequence, this leads to ideal exploitation conditions
– code belonging to each of the threads start interlacing very frequently, gen-
erating tens of millions of race wins per second. Because accessing the CPU
cache can be dozens of times faster than operating on physical memory, us-
ing cacheable pages for the attack shortens the execution time of each racing /
flipping instruction, resulting in having more instructions execute – and more
interlacing occur – within one second. To conclude, whenever a HT-enabled
platform is found to be the target of an attack, the optimal strategy would be
to create n

2 pairs of threads for n logical CPUs, each consisting of a race and
flip type thread and targeting a distinct region of cached memory.

38

In scenarios where Hyper-Threading doesn’t come into play, and we are
limited to physically separate cores, the optimal solution is largely different. As
we saw in Figure 11, race condition exploitation is most efficient when using non-
cacheable memory, resulting in each memory operation taking relatively long to
complete, therefore enabling us to win more races over time. However, it is not
really the goal to make both fetch and flip operations as slow as possible – in fact,
this is only desired for the fetch part, as the best win rates should be presumably
achieved with a possibly slow racing thread and possibly fast flipping thread.
This opens up room for some combinations of the already known techniques to
prove effective, such as page boundaries with different attributes set for the two
adjacent pages.

Figure 12 presents the comparison of race win rates for six different sets of
characteristics for the 32-bit area under attack, measured on six HT-disabled
CPUs. The configurations cover scenarios with the dword spanning across one
or two pages, with the first or both of them marked as non-cacheable or write-
combining. Where the variable crosses a page boundary (tests 3-6), the flipping
thread would only modify the 16 most significant bits residing within the second
memory page. Based on the results, it is clearly visible that for non-HT config-
urations, it is most effective to place the raced value in between a non-cacheable
and a cacheable page respectively, and only flip bits within the cached part of
the value. Similarly to Hyper-Threading scenarios, each such memory region
should be assigned to a separate pair of threads, one triggering the vulnerable
code path and the other doing the flipping work. This configuration is believed
to be the most effective one for typical desktop PC configurations where NUMA
and other advanced memory management technologies are not involved.

Additionally, the chart further confirms that there are no significant dif-
ferences in choosing between the PAGE NOCACHE and PAGE WRITECOMBINE
allocation flags, as they both achieve similar performance results.

4.6 Flipping operations

The type of assumption violated by the vulnerable kernel routine largely de-
termines the type of the operation which should be ideally performed by the
flipping thread. If successful exploitation depends on a binary decision (i.e. suc-
cessful pass through ProbeForWrite), the xor operation works really well, as
it can be used to automatically switch between the “safe” and “unsafe” value of
a variable. In case of a pointer, the constant xor operand could be 0x80000000,
in which case the address would continuously switch between user and kernel-
mode. In other cases, it might be enough to just have the raced value to be
different from what it was a while ago, without much control of what the orig-
inal and modified numbers actually are – an example of such scenario would
be the allocation and filling of a heap-based buffer based on a double-fetched
value. In such situation, it would be likely sufficient to indefinitely increment
the variable in question, hoping that at one point the number of copied bytes
would exceed the allocation size.

While the xor operation provides better precision (if a constant operand is

39

0

5 · 106

1 · 107

W
in

s
p

er
se

co
n

d
aligned address, no-cache
aligned address, write-combine
page boundary, both no-cache
page boundary, both write-combine
page boundary, first no-cache
page boundary, first write-combine

Figure 12: Number of race condition wins for different page attribute and offset
variations, on six separate physical cores.

used), it comes at a performance cost: the race is only won if the binary in-
struction executes an odd number of times within the time window, whereas
for arithmetic instructions such as addition or subtraction, it is enough to exe-
cute them any non-zero number of times. As a result, the usage of arithmetic
operations is approximately two times faster than xor but leaves the attacker
uncertain of how exactly the value changes (and thus, for example, how many
bytes are overwritten in a kernel buffer). When deciding on the specific opera-
tion to use in your exploit, please consider if precision or the race winning rate
is a priority in your particular use-case.

4.7 Priority classes

Each thread in a Windows session is subject to thread scheduling implemented
by the operating system. As some tasks are more time-critical than others or
require more computation power to complete, one property assigned to every
thread is its kernel priority, calculated as a function of the process api priority
and thread api priority, two values controlled through the SetPriorityClass
and SetThreadPriority API functions. By raising the process/thread pri-
orities to HIGH PRIORITY CLASS and THREAD PRIORITY HIGHEST respec-
tively (these are the highest classes available to every user in the operating
system), an exploit can make sure that it would not be preempted by normal-
priority tasks running in the context of the attacker’s and other users’ accounts.
Whether mangling with the priorities makes much sense in a practical attack
depends on the type of the target machine – if it is under heavy load, has mul-
tiple threads running in parallel to the exploit, and so forth. In our typical
testing environment with no other processes competing for CPU time, changing
the priority class has hardly any effect on the exploit performance; since it is

40

difficult to simulate the execution environment of a Windows server workstation
with multiple users logged in, no further tests were performed in this area.

With regards to the task scheduling algorithm implemented in Windows,
the two obligatory reads are section ”Processes, Threads and Jobs: Thread
Scheduling” in Windows Internals 6. Part 1[12] and the ”Scheduling” section
at MSDN[25].

5 Case study

Throughout several iterations of running Bochspwn against Windows 7 and
Windows 8 in both 32 and 64-bit versions, the project has identified around 100
unique instances of multiple user-mode memory fetches reported to Microsoft.
Although most of the reports were turned down as either non-exploitable or
requiring administrative rights for successful exploitation, many were actual
security vulnerabilities. In order to develop and test the race condition ex-
ploitation techniques discussed above, as well as prove the feasibility of using
the bugs in real-life scenarios, we have created fully functional exploits for two
of Bochspwn’s findings, each slightly different in terms of the attacker’s gains,
yet both of them eventually leading to an elevation of privileges within the op-
erating system. Each subsequent subsection aims to fully explain the nature of
the security issue in question, how the race can be won within the time frame
existing in the vulnerability and how the resulting violation could be used to a
hostile user’s benefit.

While actual proof of concept source code is not explicitly provided with
the paper, we encourage the reader to reproduce the described steps and try to
reconstruct working exploits from the available information.

5.1 CVE-2013-1254

Let’s begin with a vulnerability – or, in fact, a family of 27 distinct vulnera-
bilities – which is particularly special for the Bochspwn project. The overall
group of bugs, otherwise identified as CVE-2013-1248 to CVE-2013-1250 and
CVE-2013-1254 to CVE-2013-1277 was originally found by j00ru several years
back (likely around 2010 / 2011), but ignored or forgotten at the time. Several
years later, in August 2012, he accidentally stumbled upon these bugs again
while doing unrelated research, and decided to investigate them in more detail.
As it turned out after several days, these bugs were real and exploitable, thus we
reported them to Microsoft via the usual means. Due to the fact that all flaws
were caused by the very same faulty code pattern, we started considering differ-
ent approaches to find more issues of the same kind. None of these bugs were
originally Bochspwn’s findings, but they inspired the overall research and were
successfully used as a control group, in order to confirm that our implementation
worked correctly.

In order to understand why the vulnerabilities existed in the first place, and
how they were likely fixed with a single change in a shared macro definition,

41

some background on the inner workings of win32k.sys is required. This is
covered in the next section.

5.1.1 The vulnerability

Although the mechanism of user-mode callbacks is an obscure, internal detail
strongly tied to the overall Windows GUI architecture and not particularly
useful to anyone but core Microsoft kernel developers and possibly some se-
curity professionals, it has been publicly discussed in great detail; specifically
because of the fact that its incorrect usage has led to a number of serious priv-
ilege escalation vulnerabilities in the operating system (see “Kernel Attacks
through User-Mode Callbacks”[33] and “Analyzing local privilege escalations
in win32k”[27]), and its implementation strongly affected the exploitability of
seemingly unrelated issues (see “The story of CVE-2011-2018 exploitation”[14]).
For the interesting low-level details related to the mechanism, please refer to the
three aforementioned papers.

The general idea behind the feature is as follows: because of the client/server
design of GUI interactions (i.e. a request to perform an operation issued by one
process may concern a graphical element managed by another process), many
system call handlers and nested routines called within them must consult the
user-mode portion of a process (the WndProc routine, or one of the built-in
user32.dll functions) before proceeding with an operation. Depending on
the specific window event, these callbacks are used to inform user-mode (pass
data), ask user-mode (acquire more data) or both. A simplified illustration of
the execution flow is presented in Figure 13.

invoke win32k.sys system service

call back to ring-3 for more data

process request in user.dll / WndProc

complete GUI operation, return from syscall

continue execution

ring-0

ring-3

pass input data read output data

Figure 13: Execution flow of a user syscall involving a user-mode callback.

Internally, output data from user-mode is passed back to kernel-mode through
a trivial structure presented in Listing 9 (the structure definition is not officially
available, but given its small size, the semantics of each field can be easily in-
ferred by reverse engineering relevant code). The structure stores information
about the exit code of the user-mode handler invoked upon the callback, and a
pointer / length pair specifying where in ring-3 memory the actual data can be
found. A pointer to the structure is traditionally passed as the first parameter
to the NtCallbackReturn service, responsible for restoring the previous exe-
cution context from information stored on the kernel stack and returning from
the original KeUserModeCallback call.

Listing 9: Reverse-engineered definition of the output callback structure.

42

typedef struct _CALLBACK_OUTPUT {
NTSTATUS st;
DWORD cbOutput;
PVOID pOutput;

} CALLBACK_OUTPUT;

After the callback returns, it is up to the win32k caller to process the output
pointer in CALLBACK OUTPUT, which typically takes the form of following the
steps:

1. Check that the output data length is 12 bytes (size of the structure).

2. Check that the structure resides within user-mode.

3. Check that CALLBACK OUTPUT->pOutput resides within user-mode.

4. Copy n bytes from CALLBACK OUTPUT->pOutput into a local kernel
buffer, where n is specific to the caller function (usually between 4 and
128 bytes).

5. Further operate on the locally saved copy.

While each particular step is fundamentally simple, you can notice that there
is potential for a multi-fetch condition here – the steps include referencing a user-
mode value for sanity checking and using it as the src parameter to inlined
memcpy. This is by no means an unusual situation, as the kernel continuously
fetches, verifies and uses pointers residing within user-mode; however in this
particular case, the disassembly for the relevant part of the code looked as
shown in Listing 10. In the assembly snippet, the ECX register would point into a
user-controlled CALLBACK OUTPUT structure. As the listing clearly illustrates,
there are two subsequent user-mode fetches: one performed implicitly by the
CMP instruction and the other one executed if the preceeding sanity condition
is met, separated by a single conditional branch. Further in the code, the value
obtained in the second read is used as the source address to copy 28 bytes
(which is the case for win32k!ClientGetMessageMPH, used as an example).
Without doubt, this is an obvious instance of a time of check to time of use race
condition with both user-mode memory reads placed almost directly one after
another.

Listing 10: Flawed handling of the CALLBACK OUTPUT structure.

.text:BF8C4505 mov eax, _W32UserProbeAddress
.
.
.

.text:BF8C4524 cmp [ecx+CALLBACK_OUTPUT.pOutput], eax

.text:BF8C4527 jnb short invalid_ptr

.text:BF8C4529 mov eax, [ecx+CALLBACK_OUTPUT.pOutput]

.text:BF8C4529

.text:BF8C452C invalid_ptr:

.text:BF8C452C push 7

43

.text:BF8C452E pop ecx

.text:BF8C452F mov esi, eax

.text:BF8C4531 rep movsd

After identifying the problem in one routine, we found that identical three-
instruction assembly patterns are also present in 26 other win32k.sys func-
tions, “incidentally” always around a call to KeUserModeCallback, thus in
fact representing the exact same type of vulnerability. A list of functions de-
termined to be affected by the problem is shown below; it is possible that more
instances were found and patched by Microsoft internally in the process of vari-
ant analysis.

CalcOutputStringSize
ClientGetListboxString
ClientGetMessageMPH
ClientImmLoadLayout
CopyOutputString
SfnINOUTDRAG
SfnINOUTLPMEASUREITEMSTRUCT
SfnINOUTLPPOINT5
SfnINOUTLPRECT
SfnINOUTLPSCROLLINFO
SfnINOUTLPUAHMEASUREMENUITEM
SfnINOUTLPWINDOWPOS
SfnINOUTNEXTMENU
SfnINOUTSTYLECHANGE
SfnOUTLPCOMBOBOXINFO
SfnOUTLPRECT
SfnOUTLPSCROLLBARINFO
SfnOUTLPTITLEBARINFOEX
fnHkINDWORD
fnHkINLPCBTCREATESTRUCT
fnHkINLPMOUSEHOOKSTRUCTEX
fnHkINLPRECT
fnHkOPTINLPEVENTMSG
xxxClientCopyDDEIn1
xxxClientCopyDDEOut1
xxxClientGetCharsetInfo
xxxClientGetDDEHookData

The general scheme was always similar in each affected function – start with a
call into user-mode, then perform basic sanitization over the CALLBACK OUTPUT
structure and finally use the pOutput field found at offset 8 to retrieve the
contents of a function-specific structure. After careful analysis of the compiler-
generated code found in those functions, we have a strong feeling that the vul-
nerability was likely a result of using a macro similar to the following:

#define FETCH_USERMODE_STRUCT(x, type) ((x) < MmUserProbeAddress ?

*(type *)(x) :
MmUserProbeAddress)

44

used in the following manner:

LocalStructure = FETCH_USERMODE_STRUCT(CallbackOutput->pOutput,
STRUCT_TYPE);

Although it is a wild and unconfirmed guess, there are several arguments to
support the claim:

1. The very same assembly code is shared across all affected routines with a
1:1 opcode bytes relation, implying that exactly the same high-level code
pattern was used to generate each of those code snippets.

2. The overall assembly construct is highly optimized, which is especially
characteristic to brief inline if C statements such as the one presented
above.

3. The structure-copying code which follows pointer sanitization is highly
optimized for size. For relatively long structures, an inlined implementa-
tion of memcpy is used as illustrated in Listing 10; shorter ones are copied
using chained MOV instructions (see SfnINOUTSTYLECHANGE for an ex-
ample). Such optimizations are specific to direct structure assignments
used in C source code.

Based on what we know about the vulnerability at this point, several obser-
vations come to mind. First of all, the value fetched twice in a row is always
used exclusively in a read operation, i.e. while copying a final structure from
user-mode; the address is never written to. The fact renders any kind of kernel
memory corruption impossible, greatly limiting potential vectors of exploitation.
Instead, if an attacker was able to provoke inconsistency in the referenced mem-
ory region so that the value obtained during the second fetch was arbitrary, the
vulnerability would make it possible to get the kernel to read data from ring-0
address space and possibly leak the data back to user-mode. In other words,
each of those 27 issues could be used (at maximum) to read arbitrary kernel
memory or crash the operating system by triggerring an unhandled access vio-
lation exception if the race is won, which might be a difficult task in itself due
to the narrow time window available.

5.1.2 Winning the race

Considering the fact that the available time window is limited to a single condi-
tional branch and a portion of the preceding memory-fetch instruction, winning
the race a reasonable number of times per second requires the usage of a majority
of techniques explained in the paper – specifically, placing the dword subject to
the race at a page boundary, with the first page being marked as non-cacheable,
flushing the TLB each time prior to invoking the vulnerable code path, using an
optimal thread assignment strategy (depending on the hardware configuration)
and using xor as the flipping operation. By making use of the above tricks, we
have been able to achieve a result of up to 28 kernel memory reads per second
on a 5-year old laptop equipped with a AMD Turion 64 X2 TL-56 1.6GHz CPU.

45

It should be noted that in addition to extending the attack window itself, one
can also employ techniques purposed to increase the frequency of the vulnerable
code path execution. For example, it is possible to reduce the volume of un-
necessary instructions by replacing a call to the documented SetWindowLong
API function triggering the bug with a direct NtUserSetWindowLong sys-
tem service invocation. Generally, while the execution of kernel-mode instruc-
tions comprising the implementation of the vulnerable routine usually cannot be
avoided, the extent of code executed in user-mode (in between system calls) is
fully controlled, and should be reduced to a minimum for best attack efficiency.

5.1.3 Leaking kernel memory

Having the ability to read arbitrary kernel memory with a reasonable frequency
doesn’t automatically grant an attacker elevated privileges in the operating sys-
tem, but opens up room for different types of attack. Unlike typical memory
corruption issues where the problem is what and how to overwrite in memory
to hijack the execution flow while maintaining system reliability, the question
here is different – what secret information can be found in the kernel address
space that can be effectively used to escalate one’s privileges. As it turns out,
the problem is not trivial.

To our best knowledge, Windows in the default configuration does not ex-
plicitly and purposely store information which could be directly used to im-
personate another user, or otherwise gain any superpowers in the system. For
example, the overall user authentication mechanism is implemented in a user-
mode lsass.exe process, while the kernel itself doesn’t store plain-text pass-
words. As passwords are the only true secrets making it possible to elevate user
privileges, we are forced to look for other types of data which could be indirectly
used for the same purpose. Several ideas come to mind.

First of all, several exploit mitigations implemented in the latest builds of
the NT kernel are based on pseudo-random, secret values by design unknown
to an attacker. One example of such mechanism is Address Space Layout Ran-
domization (ASLR), which ensures that executable images, heap structures and
other portions of data are randomly relocated, therefore making it difficult or
impossible for a hostile user to predict the address space layout, often signifi-
cantly hindering the exploitation process. Considering the regular structure and
predictable address of the Page Directory and Page Table Entries themselves
(e.g. addresses c0000000 and c0600000 in 32-bit PAE-enabled platforms),
it would be easily possible to use the race condition to fully disclose the ad-
dress space layout and thus possibly facilitate the exploitation of another kernel
vulnerability. Realistically, this is not particularly useful, as both the x86 ar-
chitecture (as implemented by Intel and AMD) and Windows have been shown
to be affected by shortcomings that make it possible to disclose the information
in a plethora of other ways[29] [15].

Another mitigation relying solely on the secrecy of a value stored within
kernel-mode are stack cookies, commonly known as “GS cookies” in Microsoft
compilers. Stack cookies are designed to prevent exploitation of continuous

46

stack-based buffer overruns by verifying the consistency of a cookie against
the expected value stored in static memory of a specific device driver, prior to
returning from a function. Although several practical attacks have been devel-
oped against the cookie generation mechanism found in Windows 7 and prior
versions[18], disclosing the exact value of the cookie (stored under security
cookie) would make it possible to fully and reliably evade the mitigation, thus
the race condition would be a perfect fit when combined with a stack-based
overflow, such as CVE-2010-4398.

Furthermore, all commonly used transparent software disk encryption solu-
tions tend to store the disk decryption key in plaintext in kernel memory, as
the decryption itself takes place in a device driver. The fact that the decryp-
tion keys are found in physical memory has been used to demonstrate successful
Cold Boot Attacks against TrueCrypt[8]; similarly, they could be read by a user-
mode application from the kernel address space directly. While obtaining the
keys themselves doesn’t reveal the volume password and generally doesn’t allow
for elevation of privileges in the system, it could be very well used in combina-
tion with a physical attack, where the attacker later obtains a raw dump of the
disk.

Thinking of remote scenarios, it is important to note that all user-mode sys-
tem calls are internally handled by the kernel, including interactions with the
system registry, or external peripherals (network card, hard drive etc.). When
handling those requests, the underlying device drivers often dynamically allo-
cate helper buffers to store the requested data before copying it back to the
requestor’s user address space. Because none of the allocations are overwrit-
ten while being freed, and some of them are not immediately reused for other
purposes, there is a large number of memory chunks containing potentially sen-
sitive data just floating around in the kernel memory. By “scanning” the ring-0
address space in search of interesting pieces of files, network communications
or registry activity, an attacker could possibly identify plain-text passwords,
bank account pins, web browser cookies used for authorization and a number of
other potentially dangerous types of information belonging to other users who
share the target machine. However, considering that the user-mode callback
race conditions would only allow an attacker to leak optimistically up to 4kB of
data per second, it is unlikely that randomly scanning the kernel space at this
pace would yield interesting results – in order to be effective, the discussed vul-
nerability requires the attacker to know precisely which memory area contains
useful information.

One such specific type of information which can be found in the kernel struc-
tures are NTLM hashes of all users in the system. The hashes of users’ account
passwords are traditionally stored in the HKLM\SAM\SAM\Domains\Account\
Users\?\V registry values, which have been experimentally determined to be
cached by the operating system in memory, thus persistently residing in the
kernel address space. Although officially undocumented, the Config Manager
(an internal name for the registry kernel subsystem) structures are available
for analysis via Microsoft Symbol Server, and they are generally easy to under-
stand and traverse. Extracting the password hashes is believed to be the closest

47

one can get to obtaining explicit authorization data, and should be enough to
escalate one’s privileges in cases where weak passwords are used.

Finally, an attacker could simply target input devices such as the keyboard
or mouse. All physically attached HIDs are handled by respective device drivers,
which must store the data coming from external interrupts in kernel memory
at one point in time, in order for the system core to propagate the event in the
executive environment. Thanks to the fact, it is possible to sniff on a physical
user’s keyboard and mouse which in result is very likely to eventually disclose
that user’s password in plain text, ready to be used for successful impersonation
by the exploit. This exploitation scenario will be discussed in detail in the
next section; while we assume that the victim administrator uses a physically
attached PS2 keyboard to interact with the system, the principle should also
apply to other sockets (e.g. modern USB keyboards) or even remote terminal
connections.

5.1.4 Sniffing a PS/2 keyboard

In Windows, keyboard and mouse devices connected through PS/2 have corre-
sponding interrupts, both handled by the i8042prt.sys driver. In WinDbg,
it is easy to locate both interrupts using the !idt /a command with kernel
symbols loaded:

kd> !idt

Dumping IDT:

...
61: 85a4d558 i8042prt!I8042MouseInterruptService (KINTERRUPT 85a4d500)
...

71: 85a4d7d8 i8042prt!I8042KeyboardInterruptService (KINTERRUPT 85a4d780)
...

The process is similarly simple when performed programatically within the
guest system: the IDT base address for the current CPU (important – make
sure the thread is pinned to a single core at this stage) can be obtained using the
SIDT instruction. Furthermore, we can read the entire table of 256 × 8 bytes,
which gives us a full picture of the interrupt handlers registered in the system.
Out of each 8-byte structure, we can extract a 32-bit pointer by concatenating
the 16 most significant bits of the second dword and the 16 least significant bits
of the first dword. In case of interrupt no. 0x61, this would be:

kd> ? (poi(idtr + (61 * 8) + 4) & 0xffff0000) | (poi(idtr + (61 * 8)) & 0x0000ffff)
Evaluate expression: -2052795048 = 85a4d558

As can be seen, the resulting value is greater than the !idt output by
exactly 0x58 bytes; this is caused by the fact that IDT entries point directly
into executable code contained within KINTERRUPT instead of the structure
base address. As you can imagine, the code starts at offset 0x58 on a Windows
7 32-bit platform (be careful, as the offsets tend to change between system
versions, e.g. the code offset is in fact 0x50 in Windows Vista 32-bit):

48

kd> dt _KINTERRUPT
nt!_KINTERRUPT

+0x000 Type : Int2B
+0x002 Size : Int2B
+0x004 InterruptListEntry : _LIST_ENTRY
+0x00c ServiceRoutine : Ptr32 unsigned char
...
+0x050 Rsvd1 : Uint8B
+0x058 DispatchCode : [135] Uint4B

Note that the assembly contained in DispatchCode is only a stub which
eventually calls the function specified in the ServiceRoutine field of the cor-
responding interrupt descriptor. In order to identify the two interrupts (mouse
and keyboard) handled by i8042prt.sys, we should therefore do the follow-
ing:

1. Obtain the kernel base address of i8042prt.sys through NtQuerySys-
temInformation with SystemModuleInformation.

2. List all KINTERRUPT structure pointers found by scanning the IDT.

3. For each interrupt descriptor, subtract the ServiceRoutine field value
from the driver image base, and keep track of the two interrupts with the
smallest deltas.

4. At the end, you will end up with two interrupt indexes which identify the
events handled within i8042prt.sys.

As we are specifically interested in sniffing key presses and not mouse move-
ments, it is necessary to figure out which interrupt is which. In order to do this,
we have to investigate additional fields of the KINTERRUPT structure – namely,
Irql and SynchronizeIrql. It turns out that both descriptors share the
same synchronization IRQL, yet the Irql is equal to SynchronizeIrql for
keyboard interrupts and is smaller by one for mouse interrupts. This observa-
tion alone can be used to decisively determine the purpose of each interrupt
vector.

kd> dt _KINTERRUPT Irql SynchronizeIrql 85a4d500
nt!_KINTERRUPT

+0x030 Irql : 0x5 ’’
+0x031 SynchronizeIrql : 0x6 ’’

kd> dt _KINTERRUPT Irql SynchronizeIrql 85a4d780
nt!_KINTERRUPT

+0x030 Irql : 0x6 ’’
+0x031 SynchronizeIrql : 0x6 ’’

At this point, a basic understanding of how the I8042KeyboardInterrup-
tService function works comes useful. The Windows kernel interrupt han-
dling API guarantees that the second parameter of the function is a pointer to
a DEVICE OBJECT structure associated with the physical device (as specified

49

while registering the handler). Upon entry, the function acquires a pointer to
the device extension from DEVICE OBJECT.DeviceExtension:

.text:000174C3 mov eax, [ebp+pDeviceObject]

.text:000174C6 mov esi, [eax+DEVICE_OBJECT.DeviceExtension]

A few instructions later, the driver calls I8xGetByteAsynchronous to
obtain the code of the pressed / released key, and updates two bytes within the
device extension so that they store the two most recently encountered codes:

.text:00017581 lea eax, [ebp+scancode]

.text:00017584 push eax

.text:00017585 push 1

.text:00017587 call _I8xGetByteAsynchronous@8

.text:0001758C lea eax, [esi+14Ah]

.text:00017592 mov cl, [eax]

.text:00017594 mov [esi+14Bh], cl

.text:0001759A mov cl, byte ptr [ebp+scancode]

.text:0001759D mov [eax], cl

Further on, the device driver proceeds to translating the key and inserting
it into the system input queue, which is irrelevant for exploitation. It is unclear
why i8042prt.sys saves the last two scancodes into a private structure; how-
ever, this fact is greatly useful for our demonstration purposes. A pointer to
the device object can be found in the KINTERRUPT structure (which we already
located) at offset 0x18, and the device extension can be found similarly at offset
0x28 of the device object. With this information, we can successfuly sniff on all
keyboard presses by continuously disclosing the two bytes at offset 0x14a of the
extension structure. Additionally, the fact that the last two scancodes are saved
also helps, as it makes it possible to synchronize the state better and reduce the
volume of missed presses in case the race condition allows for fewer reads per
second than the number of presses a user can make.

Keep in mind that there are separate keyboard codes for the “key up”
and “key down” events, distinguished by the most significant bit in the byte.
Also, in order for the codes to have any meaning to a human, they must be
converted using two calls to MapVirtualKeyEx with the MAPVK VSC TO VK
and MAPVK VK TO CHAR parameters, respectively. Correct interpretation of key
combinations (e.g. capitalizing letters when shift is pressed) would require the
exploit to further implement the logic by itself.

A verbose output of a proof of concept sniffer is shown below.

50

[+] i8042prt.sys address: 0x8bd0c000
[+] Candidate: 0x33, service_routine: 0x90b80014, diff: 0x4e74014 irql: 0x90/0x90
[+] Candidate: 0x72, service_routine: 0x8be54df0, diff: 0x148df0 irql: 0x6/0x6
[+] Candidate: 0x91, service_routine: 0x8bd1349a, diff: 0x749a irql: 0x8/0x8
[+] keyboard IDT vector: 0x91
Dumping keyboard input:
time: 1066031, scancode: 28, key: ., pressed: false
time: 1066031, scancode: 156, key: ., pressed: true
time: 1074156, scancode: 18, key: E, pressed: false
time: 1074218, scancode: 45, key: X, pressed: false
time: 1074250, scancode: 146, key: E, pressed: true
time: 1074312, scancode: 173, key: X, pressed: true
time: 1074312, scancode: 25, key: P, pressed: false
time: 1074343, scancode: 38, key: L, pressed: false
time: 1074437, scancode: 153, key: P, pressed: true
time: 1074437, scancode: 166, key: L, pressed: true
time: 1074531, scancode: 24, key: O, pressed: false
time: 1074562, scancode: 152, key: O, pressed: true
time: 1074656, scancode: 23, key: I, pressed: false
time: 1074750, scancode: 151, key: I, pressed: true
time: 1074781, scancode: 20, key: T, pressed: false
time: 1074812, scancode: 148, key: T, pressed: true

5.1.5 Patch analysis and affected versions

Race conditions in interacting with user-mode memory are usually trivially ad-
dressed by eliminating the root cause of the bug, replacing multiple fetches of
a value with copying the data into a local buffer and working on it from there.
The win32k.sys vulnerabilities discussed in this section were no different: the
original CMP, JNB, MOV sequence of instructions was converted to the code pre-
sented in Listing 11. In the fixed version of the code, the entire 12-byte long
CALLBACK OUTPUT structure is copied to the kernel stack, preventing ring-3
threads from tampering with its contents.

Listing 11: Fixed handling of user-mode callback output data.

.text:BF8785FD mov esi, [ebp+CallbackOutputPtr]
.
.
.

.text:BF87860B loc_BF87860B:

.text:BF87860B lea edi, [ebp+CALLBACK_OUTPUT]

.text:BF87860E movsd

.text:BF87860F movsd

.text:BF878610 movsd
.
.
.

.text:BF878639 mov ecx, [ebp-CALLBACK_OUTPUT.pOutput]

.text:BF87863C cmp ecx, eax

.text:BF87863E jb short valid_address
; Use ECX as a pointer to a function-specific structure.

While the fix introduced in the affected operating systems (all supported
Windows-NT family from XP up to 7, both 32- and 64-bit versions) is apparent

51

and the intention behind it clear, the situation is a little more interesting in
Windows 8. The latest operating system has never been subject to the vulner-
ability, yet analyzing the actual assembly might imply that this was a result of
improved compiler optimization rather than deliberate action. The code found
in the win32k.sys files found in Windows 8 for x86 and ARM are shown in
Listings 12 and 13, respectively. As can be seen, the code still uses a user-mode
region to fetch a pointer for further use, but only does this once – if the sanitiza-
tion passes successfully, the old value found in the ECX or R3 register is reused,
instead of reading it again. This is a strong indication that the second memory
operation was simply optimized out by an improved Windows 8 compiler, acci-
dentally eliminating a security flaw. If this is really the case, the issues make an
excellent example of how the robustness of a compiler of choice can introduce
or entirely remove a high-impact vulnerability from the resulting binary code.

Listing 12: Secure implementation of pointer sanitization and usage found in
Windows 8 x86.

.text:BF91800F mov edx, [ebp+CallbackOutput]

.text:BF918012 cmp edx, _W32UserProbeAddress
.
.
.

.text:BF918044 mov eax, [ebp+CallbackOutput]

.text:BF918047 mov ecx, [eax+CALLBACK_OUTPUT.pOutput]

.text:BF91804A cmp ecx, _W32UserProbeAddress

.text:BF918050 jnb short invalid_ptr
; Use ECX as a pointer to a function-specific structure.

Listing 13: Secure implementation of pointer sanitization and usage found in
Windows 8 ARM.

.text:000FF2FE LDR R4, =W32UserProbeAddress
.
.
.

.text:000FF32C LDR R3, [R3,CALLBACK_OUTPUT.pOutput]

.text:000FF32E LDR R2, [R4]

.text:000FF330 CMP R3, R2

.text:000FF332 BCC valid_address

.text:000FF336 valid_address
; Use R3 as a pointer to a function-specific structure.

5.2 CVE-2013-1278

Microsoft explicitly guarantees that each new version of an NT kernel-based
Windows would be compatible with prior versions of the system; e.g. all pro-
grams developed for Windows XP are supposed to work correctly on Windows
8 without any modifications. This is achieved by preserving compatibility on
many fronts, including maintaining support for legacy or deprecated interfaces,

52

extending existing API functionality instead of completely rebuilding it and so
forth. Managing cross-version compatibility is one of the fundamental goals of
Windows and therefore is a large and costly effort. More information on appli-
cation compatibility can be found in a dedicated section in the MSDN library
[23].

One of the more important portions of the Windows feature is the Appli-
cation Compatibility Database (SDB in short), a part of the Shim Engine. In
few words, the database stores information about the compatibility options for
each executable file that requires special treatment, such as the symbols and
DLL names of files which need to be loaded in older builds, function hooking
options etc. Alex Ionescu wrote a brief series of blog posts, providing an in-
depth explanation of how the subsystem was designed and implemented [1] [2]
[3] [4]. In order to avoid performing costly operations such as hard drive reads
each time a legacy application starts, the operating system implements what
is called an Application Compatibility Shim Cache. In Windows XP/2003, the
cache mechanism relied on a section shared across multiple processes; in newer
versions of the system, a dedicated NtApphelpCacheControl system service
was introduced, supposedly in order to further minimize the CPU overhead in-
curred by each cache-involving operation. Even though the syscall has remained
the compulsory interface up to the latest Windows 8 system, its internal imple-
mentation has gone through significant changes with each major build of the
OS. As a consequence, the vulnerability discussed in this section is specific to
Windows 7, mitigated by codebase differences in Windows Vista and Windows
8.

5.2.1 The vulnerability

The security flaw itself is trivial in its principle and not related to the function-
ality it is found in. There are several different operation codes passed to the
NtApphelpCacheControl function which trigger further, internal handlers:

1. ApphelpCacheLookupEntry

2. ApphelpCacheInsertEntry

3. ApphelpCacheRemoveEntry

4. ApphelpCacheFlush

5. ApphelpCacheDump

6. ApphelpCacheSetServiceStatus

7. ApphelpCacheForward

8. ApphelpCacheQuery

If you take a deep look into the unpatched versions of ApphelpCacheLook-
upEntry and ApphelpCacheQuery, you will notice patterns presented in

53

Listings 14 and 15. In both assembly snippets, the EDI or EBX registers store
a user-mode pointer. Given what we already know about double fetches, the
faulty conditions are apparent – an inconsistency can be caused in between
verifying the user-mode pointer and using it as the dst parameter of memcpy,
consequently resulting in a memory write with controlled destination operand,
and potentially controlled contents. Such conditions are typically trivial to ex-
ploit into a local elevation of privileges, due to the multitude of easily localizable
function pointers present in the kernel address space.

Listing 14: The vulnerable portion of the nt!ApphelpCacheLookupEntry im-
plementation.

PAGE:00631EC4 mov ecx, [edi+18h]
...
PAGE:00631EE0 push 4
PAGE:00631EE2 push eax
PAGE:00631EE3 push ecx
PAGE:00631EE4 call _ProbeForWrite@12
PAGE:00631EE9 push dword ptr [esi+20h]
PAGE:00631EEC push dword ptr [esi+24h]
PAGE:00631EEF push dword ptr [edi+18h]
PAGE:00631EF2 call _memcpy

Listing 15: The vulnerable portion of the nt!ApphelpCacheQuery implemen-
tation.

PAGE:007099B5 mov edx, [ebx+8Ch]
...
PAGE:007099D7 push 4
PAGE:007099D9 push ecx
PAGE:007099DA push edx
PAGE:007099DB call _ProbeForWrite@12
PAGE:007099E0 push [ebp+Length]
PAGE:007099E3 push [ebp+P]
PAGE:007099E6 push dword ptr [ebx+8Ch]
PAGE:007099EC call _memcpy

5.2.2 Winning the race

Unlike the previous bug, this vulnerability allows an attacker to write to an
arbitrarily-chosen location in the ring-0 virtual address space. Therefore, it only
takes a single race win to escalate one’s privileges in the system. Additionally,
the available time frame is incomparably longer, as the two memory fetches are
separated by dozens of unrelated instructions (primarily the implementation
of ProbeForWrite). The two facts allow the attacker to not worry about
the winning part, and reduce the necessity to use the complicated techniques
discussed in prior chapters. It has been shown experimentally that just two
threads running on two different CPUs (regardless of Hyper-Threading being
enabled or not) successfully trigger the vulnerability in less than 5 seconds in
all tested configurations. The exploitability on single-core configurations has

54

not been tested; yet, it is believed that such platforms should also be prone to
exploitation of the issue.

5.2.3 Exploitation

When writing to controlled locations in kernel memory is made possible by a
vulnerability, the rest of the process is really just a formality. In order to make
an exploit fully reliable and get it to work in every configuration, one should
thoroughly understand the contents of memory being copied over to the target
address – in this case, the Apphelp Cache structure copied with the faulty
memcpy call. As this section is for demonstrational purposes only, we will skip
this step and go straight into practical exploitation process on a Windows 7 SP1
32-bit platform.

We have empirically demonstrated that trying to execute the C:\Windows\
system32\wuauclt.exe image always results in having a compatibility en-
try set up in the cache, making it possible to later use the existing entry while
exploiting the ApphelpCacheLookupEntry vulnerability, without a need to
manually insert a new record with ApphelpCacheInsertEntry. Further-
more, in order to reach the vulnerable code path, NtApphelpCacheControl
requires us to provide a pointer to an empty structure with the following fields
set:

1. offset 0x98: A handle to the C:\Windows\system32\wuauclt.exe file
on disk.

2. offset 0x9c: A UNICODE STRING structure containing an NT path of the
file.

3. offset 0xa4: A bogus size of an output buffer, e.g. 0xffffffff.

4. offset 0xa8: A pointer to a user-mode buffer of a significant size (e.g. 4kB
for safety). This is the DWORD being raced against.

Filling in the above data allows an attacker to pass the obligatory call
to ApphelpCacheControlValidateParameters and results in having the
data stored for wuauclt.exe in the cache to be copied into the address spec-
ified at offset 0xa8 of the input structure (or a completely arbitrary location in
case of a successful attack). At this point, we should investigate the src and
length parameters in the critical memcpy call in more detail:

55

0: kd> dd esp esp+8
8c60fb4c 0022fcd4 8c974e38 000001c8

0: kd> dd /c 6 poi(esp+4) poi(esp+4)+poi(esp+8)-4
8c974e38 00034782 00000000 00000000 00000000 00000000 00000000
8c974e50 00000000 00000000 00000000 00000000 00000000 00000000
8c974e68 00000000 00000000 00000000 00000000 00000000 00000000
8c974e80 00000000 00000000 00000000 00000000 00000000 00000000
8c974e98 00000000 00000000 00000000 00000000 00000000 00000000
8c974eb0 00000000 00000000 00000000 00000000 00000000 00000000
8c974ec8 00000000 00000000 00000000 00000000 00000000 00000000
8c974ee0 00000001 00000000 00000000 00000000 00000000 00000000
8c974ef8 00000000 00000001 11111111 11111111 11111111 11111111
8c974f10 00000000 00000000 00000000 00000000 00000000 00000000
8c974f28 00000000 00000000 00000000 00000000 00000000 00000000
8c974f40 00000000 00000000 00000000 00000000 00000000 00000000
8c974f58 00000000 00000000 00000000 00000000 00000000 00000000
8c974f70 00000000 00000000 00000000 00000000 00000000 00000000
8c974f88 00000000 00000000 00000000 00000000 00000000 00000000
8c974fa0 00000000 00000000 00000000 00000000 00000000 00000000
8c974fb8 00000000 00000000 00000000 00000000 00000000 00000000
8c974fd0 00000000 00000000 00000000 00000000 00000000 00000000
8c974fe8 00000000 00000000 00000000 00000000 00000000 00000000

The overall structure of size 0x1c8 appears to be rather non-interesting, con-
taining zeros, ones and a single 0x00034782 value at the beginning (the specific
number differs from system to system, but has always been observed to have
0x0003 in the most significant 16 bits). While this outcome would typically be
useful, the size of the structure causes exploitation to be rather troublesome,
as overwriting the desired value in the static memory of a device driver or a
pool allocation would consequently trash the surrounding area, likely crashing
the operating system before we take control. We have encountered a problem of
similar nature while trying to take advantage of a NULL pointer dereference vul-
nerability in the NTFS.SYS driver[7], where it was possible to craft a complex
ERESOURCE structure at any chosen kernel-mode address. Back then, we de-
cided to employ a new technique – make use of so-called “Private Namespace”
objects, originally introduced by Microsoft in Windows Vista. While imple-
mented as regular “namespace” objects, private namespaces have three specific
characteristics that make them particularly useful in exploitation scenarios such
as this one:

1. They are of variable length, controlled by the creator of the object (the
user).

2. They are filled mostly with controlled data, and a great majority of the
data found in the object body doesn’t matter to the kernel.

3. Each private namespace contains a pointer into a LIST ENTRY structure,
used for unlinking when the object is destroyed, effectively allowing for

56

crafting a four-byte write-what-where condition in operating systems prior
to Windows 8 (which has safe unlinking enabled by default).

For details regarding the internal implementation of private namespaces,
refer to the aforementioned “Introducing the USB Stick of Death” blog post.
In case of the CVE-2013-1278 vulnerability, it is only important that the vari-
able length user-controlled part of their structure is found after a pointer to
LIST ENTRY. Therefore, we can safely choose to overwrite the pointer with the
magic value of 0x00034782 present at the beginning of the src buffer, and let the
remaining part of the private namespace object “consume” the further 0x1c4
excessive bytes. In order to make the exploit more robust, we can additionally
shift the destination address by one byte “right”, thus setting the list entry
pointer to 0x03?????? (less likely to point into the default process heap), and
spray the overall 16-megabyte region with the LIST ENTRY fields (write-what-
where condition operands). The states of the object memory prior and following
triggering the vulnerability are shown in Figures 14 and 15.

Figure 14: Private namespace object memory prior to winning the race condi-
tion.

Once the list entry pointer points into a user-controlled region, we can
choose the two values which are going to be written into each other. One com-
monly used and cross-version compatible vector for kernel write-what-where
scenarios is the function pointer found under nt!HalDispatchTable + 4,
invoked within a nested call in KeQueryIntervalProfile; as it is an ex-
ported symbol, obtaining its virtual address takes a simple combination of
EnumDeviceDrivers, LoadLibraryEx and GetProcAddress calls. Once
we properly craft the Flink and Blink fields of the fake structure and spray it
all over the user-mode address space, we can trigger the unlinking by using the
ClosePrivateNamespace API, which will consequently overwrite the kernel
function pointer with the specified value. At this point, we can execute arbi-

57

Figure 15: Private namespace object memory after the overwrite takes place.

trary assembly code with CPL=0; the usual direction of choice is to replace
the current process’ security token with one assigned to the “System” process
(pid=4), and later restore the original value of HalDispatchTable + 4 to
maintain system stability. The result of successfully running a proof of concept
exploit is illustrated in Figure 16.

One major problem with using private namespaces as “buffers” for taking
damage incurred by illegal memory writes of large sizes is that when one of the
namespaces adjacent to the damaged one is unlinked or a completely new private
namespace is created in the system, the kernel starts traversing the double-linked
list and potentially using the bogus (overwritten) contents of the LIST ENTRY
structure as memory operands. Where transparency or post-exploitation system
reliability is required, it is advisable to manually fix the sensitive portions of
the private namespace object (specifically, the list entry).

5.2.4 Patch analysis and variant analysis

Similarly to a majority of double-fetch vulnerabilities, the issue was resolved
by simply copying the value in question to kernel address space (a local stack
variable optimized to a single register) before reusing it. The fixed implemen-
tation of the relevant portion of ApphelpCacheLookupEntry is shown in
Listing 16. At the time of running Windows against Bochspwn, neither of us
had the time to perform a thorough variant analysis in search of similar bugs in
the neighbourhood of the affected code – therefore, we originally didn’t report
an identical bug in ApphelpCacheQuery; we only realized that the flaw was
there after it was already fixed. This is clear evidence that Microsoft indeed
does perform a comprehensive variant analysis over external reports, and also

58

Figure 16: The result of successful CVE-2013-1278 exploitation.

shows that while we only reported so many of Bochspwn’s findings, the actual
volume of patches applied internally by Microsoft may significantly differ.

Listing 16: A fixed version of nt!ApphelpCacheLookupEntry.

PAGE:0063120E push 4
PAGE:00631210 push eax
PAGE:00631211 push ebx
PAGE:00631212 call _ProbeForWrite@12
PAGE:00631217 push dword ptr [esi+20h]
PAGE:0063121A push dword ptr [esi+24h]
PAGE:0063121D push ebx
PAGE:0063121E call _memcpy

5.3 Double fetch in memcmp

This section describes an interesting quirk in the implementation of one of the
memory comparison functions found in Windows kernel mode. It is not re-
solved at the time of this writing and is rather unlikely to be ever fixed, due to
its minimal severity and potential performance hit incurred by a fix. However,
we believe the issue still makes an interesting case study, showing how subtle
undocumented details of a standard C library function implementation com-
bined with an unaware device driver developer can lead to surprising security
loopholes.

While writing a kernel-mode Windows driver in C, a programmer can com-
pare two regions of memory either by calling the standard memcmp function,
or making use of a Windows-specific RtlCompareMemory API, depending on
the use-case. The official MSDN documentation does not specify whether the

59

source parameters of those functions must meet any requirements, besides the
following sentence in the Remarks section of RtlCompareMemory:

Callers of RtlCompareMemory can be running at any IRQL if both
blocks of memory are resident.

The above implies that it is valid to use a user-mode memory region in
one of or both parameters, as long as the code is running at a low enough
IRQL (preferably PASSIVE LEVEL), e.g. when handling a METHOD NEITHER
IOCTL from a user-mode client. Despite the lack of an explicit warning in the
documentation, it is otherwise obvious that using a ring-3 pointer instead of
operating on a locally-saved copy of the buffer can lead to state inconsistency,
if the compared buffer is later used again for a different purpose (resulting in a
typical double fetch condition). Furthermore, the degree of control a user-mode
application has over its own address space has been shown to make it possible to
disclose the contents of a kernel-mode buffer being compared against by taking
advantage of guard pages[13]. Additionally, timing attacks against memory
comparison functions are also feasible and trivial to employ in most scenarios,
rendering all security-related usages of memory comparison functions with user-
mode parameters (e.g. password verification) insecure. Interestingly, it turns
out that there is even more to it – let’s start with a brief overview of the functions
and how they work.

The semantics of memcmp and RtlCompareMemory return values are fun-
damentally different – while the former informs the caller about the relationship
between the contents of the memory blocks, the latter simply returns the length
of the matching prefix. This causes both functions to have separate implemen-
tations, which additionally differ between versions of Windows and – obviously
– different bitnesses. Below are a few examples of algorithms implemented by
the functions on various platforms.

In Windows 7/8 32-bit, RtlCompareMemory works as follows:

1. Compare 32-bit chunks of memory for as long as possible.

2. If there is a 32-bit mismatch, compare the double words in byte granularity,
return an internal counter when the offending offset is found.

3. Otherwise, compare the remaining 0 – 3 bytes at the end of the regions,
breaking on mismatch.

4. Return the internal counter.

In Windows 7/8 64-bit, memcmp works as follows:

1. Compare 64-bit chunks of memory in an unfolded loop consisting of four
comparisons (i.e. 32 bytes are compared in one iteration).

2. If there is a 64-bit mismatch, swap both quad words using BSWAP and
return the result of the −(x ≤ y) expression.

60

3. Compare the remaining 0 – 7 bytes.

4. If there is a byte mismatch, return −(x ≤ y).

5. Return 0.

Both of the above algorithms contain a potential double fetch – when two
four or eight-byte values differ, the functions come back and fetch the bytes to
perform a comparison with a higher resolution. A typical goal in attacking those
implementations would be to fake matching regions, i.e. get memcpy to return
0 or RtlCompareMemory to return Length when the buffers are not really
identical. If you take a closer look, it turns out that neither implementation
can be abused in such a way. In case of the first one, the routine by design
cannot return a value larger than the number of matched bytes, so exploiting
the double fetch doesn’t gain the attacker any benefit. For the second one, the
only two possible return values after a mismatch are -1 and 1 due to the formula
used.

The situation is dramatically different in case of the memcmp implementation
found in Windows 8 32-bit at the time of this writing, as presented in Listing
17 in the form of a C-like pseudocode. The problem with the function is that it
assumes that once a four-byte mismatch occurs, there must be at least a single
pair of different bytes during the second run. If this is not the case due to
data inconsistency caused by a rogue user and all four bytes match, the routine
returns 0. In other words, this quirk makes it possible to reduce the memory
comparison process from full n to just four bytes, by flipping the first dword in
the compared buffer so that it is different from the dword in the other region
when accessed the first time, but identical in the second run. If the expected
32-bit value at offset 0 is known (for example, it is a magic number), the race
condition can be exploited to convince the memcmp caller that the input buffer
is equivalent to whatever it was compared against, while really only matching
the first 32 bits. Otherwise, the double word can be brute-forced due to the
relatively small 0 to 232 − 1 range.

61

Listing 17: Pseudocode of the Windows 8 32-bit kernel ”memcmp” function.

int memcmp(const void *ptr1, const void *ptr2, size_t num) {
while (num >= sizeof(DWORD)) {
if (*(PDWORD)ptr1 != *(PDWORD)ptr2) {

num = sizeof(DWORD);
break;

}
ptr1 += sizeof(DWORD);
ptr2 += sizeof(DWORD);
num -= sizeof(DWORD);

}

while (num > 0) {
BYTE x = *(PBYTE)ptr1;
BYTE y = *(PBYTE)ptr2;
if (x < y) {
return -1;

} else if (y > x) {
return 1;

}
ptr1++; ptr2++;
num--;

}

return 0;
}

The behavior is difficult to clearly classify as a “bug”, as it already requires
a somewhat erroneous condition to occur. It is also only specific to a single
Windows version and bitness, making it something more of a curiosity than
an actual problem. Microsoft was informed about the finding and eventually
decided not to fix it. If nothing more, it is a solid argument for copying user-
provided data into local buffers prior to performing any operations against it,
even if the operation in question is just a trivial C library function call.

6 Future work

There are multiple areas for development at each level of work presented in
this paper. First of all, the current state of the Bochspwn project based on
the Bochs emulator instrumentation framework has many shortcomings – first
and foremost, due to the nature of running a full-fledged operating system on a
software emulator with run-time execution analysis, it is painfully slow, nearly
on the verge of losing interaction with the guest system. However there are still
parts of the current implementation that could be further optimized for CPU
usage, the low performance of Bochs itself is the primary restrictive factor which
cannot be mitigated in any way other than changing the fundamental design of
the project. One idea for a new, massively more efficient design is to move away
from software emulation of the x86(-64) architecture and instead instrument the
operating system by taking advantage of the virtualization technology imple-

62

mented by Intel and AMD. The new concept assumes the usage of a thin VMM
similar to the one used in the Blue Pill proof of concept developed by Joanna
Rutkowska[9], instrumenting kernel-to-user memory references of a running op-
erating system on the fly. The overhead incurred by the hypervisor would be
caused exclusively by the handling of the special type of memory operations,
which are typically less than 0.01% of the total OS run time; we believe it to
be sufficiently small for the instrumentation to be transparently used on physi-
cal machines used for one’s daily work. This project, codenamed HyperPwn to
distinguish the technology used, is currently in the works and is planned to be
presented at the BlackHat USA 2013 Briefings security conference.

With regards to Bochspwn itself, the project is yet to be tested against the
Linux, Unix and BSD kernels, an effort that is also being worked on at the time
of writing this paper. Concluding by the success Bochspwn had with Microsoft
Windows and depending on the results with other platforms, it might be ben-
eficial for local security of operating system kernels to further investigate the
capabilities of CPU-level execution environment instrumentation. We strongly
believe that the general concept has an enormous potential which largely ex-
ceeds just finding local time of check to time of use vulnerabilities, as there are
many further code or memory access patterns that could be used to detect oth-
erwise overlooked instances of unusual system behavior, potentially putting its
security at risk. Several ideas of potentially interesting patterns can be found
below:

• Failed attempts to access non-existing memory user or kernel-mode mem-
ory pages, possibly absorbed by try/except constructs and therefore not
manifested in the form of a system crash.

• Multiple writes to the same user-mode memory area in the scope of a
single system service (effectively the opposite of current Bochspwn im-
plementation), with the potential of the finding instances of accidentally
disclosed sensitive data (e.g. uninitialized pool bytes) for a short while,
before being replaced with the actual syscall output.

• Execution of code with CPL=0 from user-mode virtual address space (a
condition otherwise detected by the Supervisor Mode Execution Protection
mechanism introduced in latest Intel processors) or execution of code from
non-executable memory regions which are not subject to Data Execution
Prevention, such as non-paged pool in Windows 7[24].

• Accessing pageable (yet not swapped to disk) memory while at the DISPA-
TCH LEVEL or higher IRQL.

These and many other patterns could be used in stand-alone manner, or
as a complementary part of kernel-mode fuzzing (e.g. system call or IOCTL
fuzzing) performed within the guest. With the current implementation of Bochs,
it is essential that the patterns are conceptually simple and only require the
instrumentation to know as little about the internal system state as possible –

63

otherwise, both CPU and memory overheads start growing beyond acceptable
extent. This might possibly change with HyperPwn, yet it will always hold true
that the more generic and system-independent pattern, the more effectively the
instrumentation can perform. Once both projects are open-sourced, we highly
encourage you to experiment with the above, or your own pattern ideas.

Despite the dynamic approach that we originally decided to use to tackle the
problem, it is likely that static analysis could be employed to identify double
fetch memory problems similarly, or even more effectively than Bochspwn. One
of the fundamental problems with the detection of erroneous behavior at system
run-time is that it is limited to the code coverage achieved during the testing
process, which is often very small in comparison to the overall code base of a
product. While the problem can be partially solved for applications parsing
complex, self-contained file formats by gathering a large corpus of input files
and distilling it to a compact-sized set of files with a maximum coverage, the
problem is significantly more difficult with regards to testing operating system
kernels. Instead of using a single binary blob describing the program functional-
ity required or triggered by a particular testcase, obtaining kernel code coverage
requires one to understand and implement the logic of each system service or
a group of those, a task which cannot be easily automated. The benefit to
using static analysis would therefore be remarkable, since once implemented,
the algorithm could be applied to all components of the kernel address space
with relative ease (e.g. defining kernel structures and input data entrypoints for
syscalls), including those unlikely to ever be tested by a coverage-based analysis
tool. We expect static analysis to be the future of the vulnerability hunting
industry, and race conditions in interfacing with user-mode memory seems to
be a great first target, judging by the very basic concept behind it (using the
same memory address twice within a specific code execution path).

Last but not least, very little research in the past has focused on practical
exploitation of race condition vulnerabilities in the Windows environment, be it
ring-0 or ring-3 problems. This obviously correlates with the volume of issues
of this type identified in the operating system, in comparison to other, more
prevalent problems such as regular memory corruptions. This paper aims to
show that contrary to popular belief, there indeed is a number of exploitable
race conditions in Windows and other software platforms – they just take a
different methodology to find. While several techniques were presented by re-
searchers in the past and in previous sections of the document, this area still
needs further work, starting from an in-depth analysis of the system scheduler
in the exploitation context, through techniques specific to certain configurations
(e.g. single CPU or NUMA-enabled machines), up to new means of extending
attack time windows by taking advantage of the specific implementations and
quirks found in both operating systems and chips alike.

In general, we hope that this work will inspire more development in the
fields of detecting and exploiting time-bound vulnerabilities, as well as extending
the usage of CPU-level instrumentation to identify other types of problems in
operating systems.

64

7 Remarks

As we have shown in the paper, not all vulnerability classes in the Windows
kernel have been audited for and mitigated equally well. It is difficult to pinpoint
a single most important reason for why the time of check to time of use bugs
covered in this document exist in the first place – perhaps one of the main
factors is the current model of passing input data for processing to kernel-mode
handlers, contained within a number of multi-layered structures referencing each
other through user-mode pointers. While most threats related to processing
input data are repulsed with the usage of the previous mode and fetching of
all input data into temporary buffers in the top-level syscall handlers, it is
nevertheless not uncommon to see a kernel routine executing within a callstack
a few levels deep to operate on a user-mode pointer. There is no easy resolution
for the situation – in order to improve the current posture, each system call
would require to be carefully reviewed and possibly restructured, a task which
is both dubious and – considering the still very low relation of vulnerable to
all existing code paths – not cost efficient. Therefore, we believe that the most
viable way of ensuring that the kernel is free from the discussed type of race
conditions is to invest resources in building effective tools to find them, such as
Bochspwn. In fact, it is rather surprising that neither Microsoft nor security
researchers around the world seem to have attempted to approach the problem
in a dedicated way before.

Local privilege escalation vulnerabilities are usually of little interest to black-
hat hackers or exploit brokers’ customers, which explains the little work done
in the kernel security area during the last decade. As sandboxing technologies
are now commonly used in nearly all popular web browsers and other widely-
deployed client software (e.g. Adobe Reader), most kernel vulnerabilities can
be successfully chained together with client exploits, effectively allowing for
a full system compromise; most vulnerabilities discovered by Bochspwn could
be currently used as a sandbox break-out in a number of currently available
sandboxing implementations. However, the exploitation of all of the issues could
be partially mitigated by limiting the affinity mask of each renderer process to a
single CPU, or fully mitigated by disallowing the usage of more than one thread
per renderer. Additionally, enabling ProcessSystemCallDisablePolicy
in Windows 8 could also prevent the exploitation of all security issues found in
the user/gdi kernel subsystem.

For something completely different, it is interesting to take a perspective look
at the recent evolution of user and kernel-mode vulnerability hunting process.
The professional part of the information security industry working on identifi-
cation and exploitation of client software flaws has generally stabilized around
bugs in popular web browsers and their plugins, mostly focusing on just two
types of violations – use-after-free and memory corruption (buffer overflows),
with few examples of logical, design or any other issues used in practical at-
tacks. On the other hand, every now and then the Windows kernel surprises
security professionals with a completely new or known but largely ignored vec-
tor of attacks, which all of the sudden leads to identifying dozens and dozens of

65

new local privilege escalation vulnerabilities, one example being Tarjei Mandt’s
“Kernel Attacks through User-Mode Callbacks” research in 2011[33], which led
to more than 40 unique fixes in the win32k.sys device driver, all of them
having a common root cause. This very research and its results might indi-
cate that there may in fact be more undiscovered types of problems specific to
kernel-mode or even just particular device drivers, manifested in the form of a
few dozens of critical vulnerabilities. Let’s wait and see.

8 Conclusion

In this paper, we have discussed how specific patterns of access to user-mode
memory can introduce major security issues in the Windows kernel, and how the
authors’ exemplary implementation of CPU-level operating system instrumen-
tation can help effectively identify instances of such race conditions. Further in
the document, we have addressed a number of techniques to facilitate the ex-
ploitation of time of check to time of use vulnerabilities in the kernel, and later
shown how they could successfully become a part of a practical attack, on the
example of several different findings of the Bochspwn project, including lever-
aging a non-memory corruption issue to compromise the system security. In
an attempt to motivate more development in the field of race condition hunting
and exploitation, we have listed several areas which still require further research,
and conclusively provided some final remarks.

9 Updates

1. 05/06/2013: Updated references, updated Figure 5, inserted Listing 8,
introduced minor changes in the Page boundaries section. We would like
to thank Alexander Peslyak for pointing out several problems in the paper.

References

[1] Alex Ionescu: Secrets of the Application Compatilibity Database (SDB)
Part 1. http://www.alex-ionescu.com/?p=39.

[2] Alex Ionescu: Secrets of the Application Compatilibity Database (SDB)
Part 2. http://www.alex-ionescu.com/?p=40.

[3] Alex Ionescu: Secrets of the Application Compatilibity Database (SDB)
Part 3. http://www.alex-ionescu.com/?p=41.

[4] Alex Ionescu: Secrets of the Application Compatilibity Database (SDB)
Part 4. http://www.alex-ionescu.com/?p=43.

[5] Alexander Viro: CAN-2005-2490 sendmsg compat stack overflow.
https://bugzilla.redhat.com/show_bug.cgi?id=166248.

66

http://www.alex-ionescu.com/?p=39
http://www.alex-ionescu.com/?p=40
http://www.alex-ionescu.com/?p=41
http://www.alex-ionescu.com/?p=43
https://bugzilla.redhat.com/show_bug.cgi?id=166248

[6] Fermin J. Serna: MS08-061 : The case of the kernel mode double-fetch.
http://blogs.technet.com/b/srd/archive/2008/10/14/
ms08-061-the-case-of-the-kernel-mode-double-fetch.
aspx.

[7] Gynvael Coldwind, Mateusz ”j00ru” Jurczyk: Introducing the USB Stick
of Death. http://j00ru.vexillium.org/?p=1272.

[8] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob
Appelbaum, Edward W. Felten: Lest We Remember: Cold Boot Attacks
on Encryption Keys. http://static.usenix.org/event/sec08/
tech/full_papers/halderman/halderman.pdf.

[9] Joanna Rutkowska: Subverting Vista Kernel For Fun And Profit.
http://blackhat.com/presentations/bh-usa-06/
BH-US-06-Rutkowska.pdf.

[10] Jonathan Morrison:
http://blogs.msdn.com/b/itgoestoeleven/archive/2008/03/31/why-your-
user-mode-pointer-captures-are-probably-broken.aspx. http:
//blogs.msdn.com/b/itgoestoeleven/archive/2008/03/31/
why-your-user-mode-pointer-captures-are-probably-broken.
aspx.

[11] Ken Johnson, Matt Miller: Exploit Mitigation Improvements in Windows
8. http://media.blackhat.com/bh-us-12/Briefings/M_
Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf.

[12] Mark Russinovich, David A. Salomon, Alex Ionescu: Windows Internals
6, Part 1. Intel Corporation, 2012.

[13] Mateusz ”j00ru” Jurczyk: Fun facts: Windows kernel and guard pages.
http://j00ru.vexillium.org/?p=1594.

[14] Mateusz ”j00ru” Jurczyk: The story of CVE-2011-2018 exploitation.
http:
//j00ru.vexillium.org/blog/20_05_12/cve_2011_2018.pdf.

[15] Mateusz ”j00ru” Jurczyk: Windows Security Hardening Through Kernel
Address Protection. http://j00ru.vexillium.org/?p=1038.

[16] Mateusz ”j00ru” Jurczyk: Windows X86-64 System Call Table
(NT/2000/XP/2003/Vista/2008/7/8).
http://j00ru.vexillium.org/ntapi_64/.

[17] Mateusz ”j00ru” Jurczyk: Windows X86 System Call Table
(NT/2000/XP/2003/Vista/2008/7/8).
http://j00ru.vexillium.org/ntapi/.

67

http://blogs.technet.com/b/srd/archive/2008/10/14/ms08-061-the-case-of-the-kernel-mode-double-fetch.aspx
http://blogs.technet.com/b/srd/archive/2008/10/14/ms08-061-the-case-of-the-kernel-mode-double-fetch.aspx
http://blogs.technet.com/b/srd/archive/2008/10/14/ms08-061-the-case-of-the-kernel-mode-double-fetch.aspx
http://j00ru.vexillium.org/?p=1272
http://static.usenix.org/event/sec08/tech/full_papers/halderman/halderman.pdf
http://static.usenix.org/event/sec08/tech/full_papers/halderman/halderman.pdf
http://blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf
http://blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf
http://blogs.msdn.com/b/itgoestoeleven/archive/2008/03/31/why-your-user-mode-pointer-captures-are-probably-broken.aspx
http://blogs.msdn.com/b/itgoestoeleven/archive/2008/03/31/why-your-user-mode-pointer-captures-are-probably-broken.aspx
http://blogs.msdn.com/b/itgoestoeleven/archive/2008/03/31/why-your-user-mode-pointer-captures-are-probably-broken.aspx
http://blogs.msdn.com/b/itgoestoeleven/archive/2008/03/31/why-your-user-mode-pointer-captures-are-probably-broken.aspx
http://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
http://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
http://j00ru.vexillium.org/?p=1594
http://j00ru.vexillium.org/blog/20_05_12/cve_2011_2018.pdf
http://j00ru.vexillium.org/blog/20_05_12/cve_2011_2018.pdf
http://j00ru.vexillium.org/?p=1038
http://j00ru.vexillium.org/ntapi_64/
http://j00ru.vexillium.org/ntapi/

[18] Mateusz ”j00ru” Jurczyk, Gynvael Coldwind: Exploiting the otherwise
non-exploitable: Windows Kernel-mode GS Cookies subverted.
http://vexillium.org/dl.php?/Windows_Kernel-mode_GS_
Cookies_subverted.pdf.

[19] Microsoft: Microsoft Security Bulletin MS13-016 - Important.
http://technet.microsoft.com/en-us/security/bulletin/
MS13-016.

[20] Microsoft: Microsoft Security Bulletin MS13-017 - Important.
http://technet.microsoft.com/en-us/security/bulletin/
MS13-017.

[21] Microsoft: Microsoft Security Bulletin MS13-031 - Important.
http://technet.microsoft.com/en-us/security/bulletin/
MS13-031.

[22] Microsoft: Microsoft Security Bulletin MS13-036 - Important.
http://technet.microsoft.com/en-us/security/bulletin/
MS13-036.

[23] MSDN: Application Compatibility. http://technet.microsoft.
com/en-us/library/ee461265(v=ws.10).aspx.

[24] MSDN: Data Execution Prevention. http://technet.microsoft.
com/en-us/library/cc738483%28v=ws.10%29.aspx.

[25] MSDN: Scheduling. http://msdn.microsoft.com/en-us/
library/windows/desktop/ms685096%28v=vs.85%29.aspx.

[26] MSDN: Working Set. http://msdn.microsoft.com/en-us/
library/windows/desktop/cc441804(v=vs.85).aspx.

[27] mxatone: Analyzing local privilege escalations in win32k.
http://uninformed.org/index.cgi?v=10&a=2.

[28] Niels Provos: Improving Host Security with System Call Policies. http:
//www.citi.umich.edu/u/provos/papers/systrace.pdf.

[29] Ralf Hund, Carsten Willems, Thorsten Holz: Practical Timing Side
Channel Attacks Against Kernel Space ASLR.
http://www.internetsociety.org/doc/
practical-timing-side-channel-attacks-against-kernel-space-aslr.

[30] Robert N. M. Watson: Exploiting Concurrency Vulnerabilities in System
Call Wrappers. http://www.watson.org/˜robert/2007woot/
2007usenixwoot-exploitingconcurrency.pdf.

[31] sgrakkyu, twiz: Attacking the Core : Kernel Exploiting Notes.
http://phrack.org/issues.html?issue=64&id=6#article.

68

http://vexillium.org/dl.php?/Windows_Kernel-mode_GS_Cookies_subverted.pdf
http://vexillium.org/dl.php?/Windows_Kernel-mode_GS_Cookies_subverted.pdf
http://technet.microsoft.com/en-us/security/bulletin/MS13-016
http://technet.microsoft.com/en-us/security/bulletin/MS13-016
http://technet.microsoft.com/en-us/security/bulletin/MS13-017
http://technet.microsoft.com/en-us/security/bulletin/MS13-017
http://technet.microsoft.com/en-us/security/bulletin/MS13-031
http://technet.microsoft.com/en-us/security/bulletin/MS13-031
http://technet.microsoft.com/en-us/security/bulletin/MS13-036
http://technet.microsoft.com/en-us/security/bulletin/MS13-036
http://technet.microsoft.com/en-us/library/ee461265(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/ee461265(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc738483%28v=ws.10%29.aspx
http://technet.microsoft.com/en-us/library/cc738483%28v=ws.10%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms685096%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms685096%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/cc441804(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/cc441804(v=vs.85).aspx
http://uninformed.org/index.cgi?v=10&a=2
http://www.citi.umich.edu/u/provos/papers/systrace.pdf
http://www.citi.umich.edu/u/provos/papers/systrace.pdf
http://www.internetsociety.org/doc/practical-timing-side-channel-attacks-against-kernel-space-aslr
http://www.internetsociety.org/doc/practical-timing-side-channel-attacks-against-kernel-space-aslr
http://www.watson.org/~robert/2007woot/2007usenixwoot-exploitingconcurrency.pdf
http://www.watson.org/~robert/2007woot/2007usenixwoot-exploitingconcurrency.pdf
http://phrack.org/issues.html?issue=64&id=6#article

[32] Tal Garfnkel: Traps and Pitfalls: Practical Problems in System Call
Interposition Based Security Tools. http://www.cs.berkeley.edu/

˜dawnsong/teaching/f12-cs161/readings/traps.pdf.

[33] Tarjei Mandt: Kernel Attacks through User-Mode Callbacks.
http://www.mista.nu/research/mandt-win32k-paper.pdf.

[34] The WINE Project: Wine Conformance Tests.
http://wiki.winehq.org/ConformanceTests.

[35] twiz, sgrakkyu: From RING 0 to UID 0.
http://events.ccc.de/congress/2007/Fahrplan/
attachments/1024_Ring-Zero-to-UID-Zero.

69

http://www.cs.berkeley.edu/~dawnsong/teaching/f12-cs161/readings/traps.pdf
http://www.cs.berkeley.edu/~dawnsong/teaching/f12-cs161/readings/traps.pdf
http://www.mista.nu/research/mandt-win32k-paper.pdf
http://wiki.winehq.org/ConformanceTests
http://events.ccc.de/congress/2007/Fahrplan/attachments/1024_Ring-Zero-to-UID-Zero
http://events.ccc.de/congress/2007/Fahrplan/attachments/1024_Ring-Zero-to-UID-Zero

	Introduction
	Race conditions in interactions with user-mode memory
	Prior research

	The Bochspwn project
	Memory Access Pattern Analysis
	Double-fetch pattern
	Multiple memory reads from the same address
	A short time frame
	Kernel-mode code
	User-controlled memory

	Design
	Common parts
	Offline mode
	Online mode

	Performance
	CPU overhead
	Offline mode overhead
	Online mode overhead

	Testing and results

	Exploitation
	Single CPU scenarios
	Page boundaries
	Memory caching and write-combining
	TLB Flushing
	Thread management
	Flipping operations
	Priority classes

	Case study
	CVE-2013-1254
	The vulnerability
	Winning the race
	Leaking kernel memory
	Sniffing a PS/2 keyboard
	Patch analysis and affected versions

	CVE-2013-1278
	The vulnerability
	Winning the race
	Exploitation
	Patch analysis and variant analysis

	Double fetch in memcmp

	Future work
	Remarks
	Conclusion
	Updates

