
Effective file format fuzzing
Thoughts, techniques and results

Mateusz “j00ru” Jurczyk

Black Hat Europe 2016, London

PS> whoami

• Project Zero @ Google

• Part time developer and frequent user of the fuzzing infrastructure.

• Dragon Sector CTF team vice captain.

• Low-level security researcher with interest in all sorts of vulnerability

research and software exploitation.

• http://j00ru.vexillium.org/

• @j00ru

http://j00ru.vexillium.org/
http://twitter.com/j00ru

Agenda

• What constitutes real-life offensive fuzzing (techniques and mindset).

• How each of the stages is typically implemented and how to improve

them for maximized effectiveness.

• Tips & tricks on the examples of software I’ve fuzzed during the past few

years: Adobe Reader, Adobe Flash, Windows Kernel, Oracle Java, Hex-Rays IDA Pro,

FreeType2, FFmpeg, pdfium, Wireshark, …

Fuzzing

Fuzz testing or fuzzing is a software testing technique, often

automated or semi-automated, that involves providing

invalid, unexpected, or random data to the inputs of a

computer program.

http://en.wikipedia.org/wiki/Fuzz_testing

In my (and this talk’s) case

• Software = commonly used programs and libraries, both open and closed-source,

written in native languages (C/C++ etc.), which may be used as targets for

memory corruption-style 0-day attacks.

• Inputs = files of different (un)documented formats processed by the target

software (e.g. websites, applets, images, videos, documents etc.).

On a scheme

START

choose input

mutate input

feed to target

target
crashed

save input
noyes

Easy to learn, hard to master.

Key questions

• How do we choose the fuzzing target in the first place?

• How are the inputs generated?

• What is the base set of the input samples? Where do we get it from?

• How do we mutate the inputs?

• How do we detect software failures / crashes?

• Do we make any decisions in future fuzzing based on the software’s behavior in the past?

• How do we minimize the interesting inputs / mutations?

• How do we recognize unique bugs?

• What if the software requires user interaction and/or displays windows?

• What if the application keeps crashing at a single location due to an easily reachable bug?

• What if the fuzzed file format includes checksums, other consistency checks, compression or encryption?

Let’s get technical.

Gathering an initial corpus of input files

• A desired step in a majority of cases:

• Makes it possible to reach some code paths and program states immediately after starting the

fuzzing.

• May contain complex data structures which would be difficult or impossible to generate

organically using just code coverage information, e.g. magic values, correct headers, compression

trees etc.

• Even if the same inputs could be constructed during fuzzing with an empty seed, having them

right at the beginning saves a lot of CPU time.

• Corpora containing files in specific formats may be frequently reused to fuzz various software

projects which handle them.

Gathering inputs: the standard methods

• Open-source projects often include extensive sets of input data for testing, which can be freely

reused as a fuzzing starting point.

• Example: FFmpeg FATE, samples.ffmpeg.org. Lots of formats there, which would be otherwise very difficult to

obtain in the wild.

• Sometimes they’re not publicly available for everyone, but the developers have them and will share with

someone willing to report bugs in return.

• Many of them also include converters from format X to their own format Y. With a diverse set of

files in format X and/or diverse conversion options, this can also generate a decent corpus.

• Example: cwebp, a converter from PNG/JPEG/TIFF to WEBP images.

samples.ffmpeg.org

Gathering inputs: Internet crawling

• Depending on the popularity of the fuzzed file format, Internet crawling is

the most intuitive approach.

• Download files with a specific file extension.

• Download files with specific magic bytes or other signatures.

• If the format is indeed popular (e.g. DOC, PDF, SWF etc.), you may end up

with many terabytes of data on your disk.

• Not a huge problem, since storage is cheap, and the corpus can be later minimized to

consume less space while providing equivalent code coverage.

You may also ask what the program thinks

• Things can get a bit dire if you plan to fuzz a program which supports

dozens of different formats.

• Code coverage analysis is of course a good idea, but it tends to slow down the

process considerably (esp. for closed-source software).

• In some cases, you can use the target itself to tell you if a given file can be

handled by it or not.

• Case study: IDA Pro.

IDA Pro supported formats (partial list)

MS DOS, EXE File, MS DOS COM File, MS DOS Driver, New Executable (NE), Linear Executable (LX), Linear

Executable (LE), Portable Executable (PE) (x86, x64, ARM), Windows CE PE (ARM, SH-3, SH-4, MIPS), MachO for

OS X and iOS (x86, x64, ARM and PPC), Dalvik Executable (DEX), EPOC (Symbian OS executable), Windows Crash

Dump (DMP), XBOX Executable (XBE), Intel Hex Object File, MOS Technology Hex Object File, Netware Loadable

Module (NLM), Common Object File Format (COFF), Binary File, Object Module Format (OMF), OMF library, S-

record format, ZIP archive, JAR archive, Executable and Linkable Format (ELF), Watcom DOS32 Extender

(W32RUN), Linux a.out (AOUT), PalmPilot program file, AIX ar library (AIAFF), PEF (Mac OS or Be OS

executable), QNX 16 and 32-bits, Nintendo (N64), SNES ROM file (SMC), Motorola DSP56000 .LOD, Sony

Playstation PSX executable files, object (psyq) files, library (psyq) files

How does it work?

IDA Pro loader architecture

• Modular design, with each loader (also disassembler) residing in a separate

module, exporting two functions: accept_file and load_file.

• One file for the 32-bit version of IDA (.llx on Linux) and one file for 64-bit (.llx64).

$ ls loaders
aif64.llx64 coff64.llx64 epoc.llx javaldr64.llx64 nlm64.llx64 pilot.llx snes_spc.llx
aif.llx coff.llx expload64.llx64 javaldr.llx nlm.llx psx64.llx64 uimage.py
amiga64.llx64 dex64.llx64 expload.llx lx64.llx64 omf64.llx64 psx.llx w32run64.llx64
amiga.llx dex.llx geos64.llx64 lx.llx omf.llx qnx64.llx64 w32run.llx
aof64.llx64 dos64.llx64 geos.llx macho64.llx64 os964.llx64 qnx.llx wince.py
aof.llx dos.llx hex64.llx64 macho.llx os9.llx rt1164.llx64 xbe64.llx64
aout64.llx64 dsp_lod.py hex.llx mas64.llx64 pdfldr.py rt11.llx xbe.llx
aout.llx dump64.llx64 hppacore.idc mas.llx pe64.llx64 sbn64.llx64
bfltldr.py dump.llx hpsom64.llx64 n6464.llx64 pef64.llx64 sbn.llx
bios_image.py elf64.llx64 hpsom.llx n64.llx pef.llx snes64.llx64
bochsrc64.llx64 elf.llx intelomf64.llx64 ne64.llx64 pe.llx snes.llx
bochsrc.llx epoc64.llx64 intelomf.llx ne.llx pilot64.llx64 snes_spc64.llx64

IDA Pro loader architecture

int (idaapi* accept_file)(linput_t *li,
char fileformatname[MAX_FILE_FORMAT_NAME],
int n);

void (idaapi* load_file)(linput_t *li,
ushort neflags,
const char *fileformatname);

• The accept_file function performs preliminary processing and returns 0 or 1 depending on whether the

given module thinks it can handle the input file as Nth of its supported formats.

• If so, returns the name of the format in the fileformatname argument.

• load_file performs the regular processing of the file.

• Both functions (and many more required to interact with IDA) are documented in the IDA SDK.

Easy to write an IDA loader enumerator

$./accept_file accept_file

[+] 35 loaders found.

[-] os9.llx: format not recognized.

[-] mas.llx: format not recognized.

[-] pe.llx: format not recognized.

[-] intelomf.llx: format not recognized.

[-] macho.llx: format not recognized.

[-] ne.llx: format not recognized.

[-] epoc.llx: format not recognized.

[-] pef.llx: format not recognized.

[-] qnx.llx: format not recognized.

…

[-] amiga.llx: format not recognized.

[-] pilot.llx: format not recognized.

[-] aof.llx: format not recognized.

[-] javaldr.llx: format not recognized.

[-] n64.llx: format not recognized.

[-] aif.llx: format not recognized.

[-] coff.llx: format not recognized.

[+] elf.llx: accept_file recognized as "ELF for Intel 386 (Executable)"

Asking the program for feedback

• Thanks to the design, we can determine if a file can be loaded in IDA:

• with a very high degree of confidence.

• exactly by which loader, and treated as which file format.

• without ever starting IDA, or even requiring any of its files other than the loaders.

• without using any instrumentation, which together with the previous point speeds

things up significantly.

• Similar techniques could be used for any software which makes it possible

to run some preliminary validation instead of fully fledged processing.

Corpus distillation

• In fuzzing, it is important to get rid of most of the redundancy in the input corpus.

• Both the base one and the living one evolving during fuzzing.

• In the context of a single test case, the following should be maximized:

|𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑠𝑡𝑎𝑡𝑒𝑠 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑|

𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒

which strives for the highest byte-to-program-feature ratio: each portion of a file should

exercise a new functionality, instead of repeating constructs found elsewhere in the sample.

Corpus distillation

• Likewise, in the whole corpus, the following should be generally maximized:

|𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑠𝑡𝑎𝑡𝑒𝑠 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑|

|𝑖𝑛𝑝𝑢𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠|

This ensures that there aren’t too many samples which all exercise the same

functionality (enforces program state diversity while keeping the corpus size

relatively low).

Format specific corpus minimization

• If there is too much data to thoroughly process, and the format is easy to parse and

recognize (non-)interesting parts, you can do some cursory filtering to extract unusual

samples or remove dull ones.

• Many formats are structured into chunks with unique identifiers: SWF, PDF, PNG, JPEG, TTF, OTF

etc.

• Such generic parsing may already reveal if a file will be a promising fuzzing candidate or not.

• The deeper into the specs, the more work is required. It’s usually not cost-effective to go beyond

the general file structure, given other (better) methods of corpus distillation.

• Be careful not to reduce out interesting samples which only appear to be boring at first glance.

How to define a program state?

• File sizes and cardinality (from the previous expressions) are trivial to

measure.

• There doesn’t exist such a simple metric for program states, especially with

the following characteristics:

• their number should stay within a sane range, e.g. counting all combinations of every

bit in memory cleared/set is not an option.

• they should be meaningful in the context of memory safety.

• they should be easily/quickly determined during process run time.

𝐶𝑜𝑑𝑒 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ≅ 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑠𝑡𝑎𝑡𝑒𝑠

• Most approximations are currently based on measuring code coverage, and not the

actual memory state.

• Pros:

• Increased code coverage is representative of new program states. In fuzzing, the more tested code is executed,

the higher chance for a bug to be found.

• The sane range requirement is met: code coverage information is typically linear in size in relation to the overall

program size.

• Easily measurable using both compiled-in and external instrumentation.

• Cons:

• Constant code coverage does not indicate constant |𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑠𝑡𝑎𝑡𝑒𝑠|. A significant amount of information on

distinct states may be lost when only using this metric.

Current state of the art: counting basic blocks

• Basic blocks provide the best granularity.

• Smallest coherent units of execution.

• Measuring just functions loses lots of information on

what goes on inside.

• Recording specific instructions is generally redundant,

since all of them are guaranteed to execute within the

same basic block.

• Supported in both compiler (gcov etc.) and

external instrumentations (Intel Pin, DynamoRIO).

• Identified by the address of the first instruction.

Basic blocks: incomplete information

void foo(int a, int b) {
if (a == 42 || b == 1337) {
printf("Success!");

}
}

void bar() {
foo(0, 1337);
foo(42, 0);
foo(0, 0);

}

Basic blocks: incomplete information

void foo(int a, int b) {
if (a == 42 || b == 1337) {
printf("Success!");

}
}

void bar() {
foo(0, 1337);
foo(42, 0);
foo(0, 0);

}

paths taken

Basic blocks: incomplete information

void foo(int a, int b) {
if (a == 42 || b == 1337) {
printf("Success!");

}
}

void bar() {
foo(0, 1337);
foo(42, 0);
foo(0, 0);

}

new path

Basic blocks: incomplete information

void foo(int a, int b) {
if (a == 42 || b == 1337) {
printf("Success!");

}
}

void bar() {
foo(0, 1337);
foo(42, 0);
foo(0, 0);

}

new path

Basic blocks: incomplete information

• Even though the two latter foo() calls take different paths in the code, this

information is not recorded and lost in a simple BB granularity system.

• Arguably they constitute new program states which could be useful in fuzzing.

• Another idea – program interpreted as a graph.

• vertices = basic blocks

• edges = transition paths between the basic blocks

• Let’s record edges rather then vertices to obtain more detailed information on the

control flow!

AFL the first to introduce and ship this at large

• From lcamtuf’s technical whitepaper:

cur_location = <COMPILE_TIME_RANDOM>;

shared_mem[cur_location ^ prev_location]++;

prev_location = cur_location >> 1;

• Implemented in the fuzzer’s own custom instrumentation.

http://lcamtuf.coredump.cx/afl/technical_details.txt

Extending the idea even further

• In a more abstract sense, recording edges is recording the current block +

one previous.

• What if we recorded N previous blocks instead of just 1?

• Provides even more context on the program state at a given time, and how execution

arrived at that point.

• Another variation would be to record the function call stacks at each basic block.

• In my experience 𝑁 = 1 (direct edges) has worked very well, but more

experimentation is required and encouraged.

Counters and bitsets

• Let’s abandon the “basic block” term and use “trace” for a single unit of code coverage we are

capturing (functions, basic blocks, edges, etc.).

• In the simplest model, each trace only has a Boolean value assigned in a coverage log: REACHED

or NOTREACHED.

• More useful information can be found in the specific, or at least more precise number of times it

has been hit.

• Especially useful in case of loops, which the fuzzer could progress through by taking into account the number

of iterations.

• Implemented in AFL, as shown in the previous slide.

• Still not perfect, but allows some more granular information related to |𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑠𝑡𝑎𝑡𝑒𝑠| to be extracted and

used for guiding.

Extracting all this information

• For closed-source programs, all aforementioned data can be extracted by some simple

logic implemented on top of Intel Pin or DynamoRIO.

• AFL makes use of modified qemu-user to obtain the necessary data.

• For open-source, the gcc and clang compilers offer some limited support for code

coverage measurement.

• Look up gcov and llvm-cov.

• I had trouble getting them to work correctly in the past, and quickly moved to another solution…

• ... SanitizerCoverage!

http://clang.llvm.org/docs/SanitizerCoverage.html

Enter the SanitizerCoverage

• Anyone remotely interested in open-source fuzzing must be familiar with

the mighty AddressSanitizer.

• Fast, reliable C/C++ instrumentation for detecting memory safety issues for clang and

gcc (mostly clang).

• Also a ton of other run time sanitizers by the same authors: MemorySanitizer (use of

uninitialized memory), ThreadSanitizer (race conditions),

UndefinedBehaviorSanitizer, LeakSanitizer (memory leaks).

• A definite must-use tool, compile your targets with it whenever you can.

http://clang.llvm.org/docs/AddressSanitizer.html

Enter the SanitizerCoverage

• ASAN, MSAN and LSAN together with SanitizerCoverage can now also

record and dump code coverage at a very small overhead, in all the

different modes mentioned before.

• Thanks to the combination of a sanitizer and coverage recorder, you can have both

error detection and coverage guidance in your fuzzing session at the same time.

• LibFuzzer, Kostya’s own fuzzer, also uses SanitizerCoverage (via the in-

process programmatic API).

http://llvm.org/docs/LibFuzzer.html

SanitizerCoverage usage

% cat -n cov.cc

1 #include <stdio.h>

2 __attribute__((noinline))

3 void foo() { printf("foo\n"); }

4

5 int main(int argc, char **argv) {

6 if (argc == 2)

7 foo();

8 printf("main\n");

9 }

% clang++ -g cov.cc -fsanitize=address -fsanitize-coverage=func

% ASAN_OPTIONS=coverage=1 ./a.out; ls -l *sancov

main

-rw-r----- 1 kcc eng 4 Nov 27 12:21 a.out.22673.sancov

% ASAN_OPTIONS=coverage=1 ./a.out foo ; ls -l *sancov

foo

main

-rw-r----- 1 kcc eng 4 Nov 27 12:21 a.out.22673.sancov

-rw-r----- 1 kcc eng 8 Nov 27 12:21 a.out.22679.sancov

So, we can measure coverage easily.

• Just measuring code coverage isn’t a silver bullet by itself (sadly).

• But still extremely useful, even the simplest implementation is better then no

coverage guidance.

• There are still many code constructs which are impossible to cross with a

dumb mutation-based fuzzing.

• One-instruction comparisons of types larger than a byte (uint32 etc.), especially with

magic values.

• Many-byte comparisons performed in loops, e.g. memcmp(), strcmp() calls etc.

Hard code constructs: examples

uint32_t value = load_from_input();
if (value == 0xDEADBEEF) {
// Special branch.

}

char buffer[32];
load_from_input(buffer, sizeof(buffer));

if (!strcmp(buffer, "Some long expected string")) {
// Special branch.

}

Comparison with a 32-bit constant value

Comparison with a long fixed string

The problems are somewhat approachable

• Constant values and strings being compared against may be hard in a completely

context-free fuzzing scenario, but are easy to defeat when some program/format-

specific knowledge is considered.

• Both AFL and LibFuzzer support “dictionaries”.

• A dictionary may be created manually by feeding all known format signatures, etc.

• Can be then easily reused for fuzzing another implementation of the same format.

• Can also be generated automatically, e.g. by disassembling the target program and recording

all constants used in instructions such as:

cmp r/m32, imm32

Compiler flags may come helpful… or not

• A somewhat intuitive approach to building the target would be to disable all code optimizations.

• Fewer hacky expressions in assembly, compressed code constructs, folded basic blocks, complicated RISC-style x86

instructions etc. more granular coverage information to analyze.

• On the contrary, lcamtuf discovered that using –O3 –funroll-loops may result in unrolling short fixed-string comparisons

such as strcmp(buf, “foo”) to:

cmpb $0x66,0x200c32(%rip) # 'f‘

jne 4004b6

cmpb $0x6f,0x200c2a(%rip) # 'o‘

jne 4004b6

cmpb $0x6f,0x200c22(%rip) # 'o‘

jne 4004b6

cmpb $0x0,0x200c1a(%rip) # NUL

jne 4004b6

• It is quite unclear which compilation flags are most optimal for coverage-guided fuzzing.

• Probably depends heavily on the nature of the tested software, requiring case-by-case adjustments.

https://lcamtuf.blogspot.com/2014/11/afl-fuzz-nobody-expects-cdata-sections.html

Past encounters

• In 2009, Tavis Ormandy also presented some ways to improve the effectiveness of

coverage guidance by challenging complex logic hidden in single x86 instructions.

• “Deep Cover Analysis”, using sub-instruction profiling to calculate a score depending on how

far the instruction progressed into its logic (e.g. how many bytes repz cmpb has successfully

compared, or how many most significant bits in a cmp r/m32, imm32 comparison match).

• Implemented as an external DBI in Intel PIN, working on compiled programs.

• Shown to be sufficiently effective to reconstruct correct crc32 checksums required by PNG

decoders with zero knowledge of the actual algorithm.

http://taviso.decsystem.org/making_software_dumber.pdf

Ideal future

• From a fuzzing perspective, it would be perfect to have a dedicated

compiler emitting code with the following properties:

• Assembly being maximally simplified (in terms of logic), with just CISC-style

instructions and as many code branches (corresponding to branches in actual code)

as possible.

• Only enabled optimizations being the fuzzing-friendly ones, such as loop unrolling.

• Every comparison on a type larger than a byte being split to byte-granular

operations.

• Similarly to today’s JIT mitigations.

Ideal future

cmp dword [ebp+variable], 0xaabbccdd
jne not_equal

cmp byte [ebp+variable], 0xdd
jne not_equal
cmp byte [ebp+variable+1], 0xcc
jne not_equal
cmp byte [ebp+variable+2], 0xbb
jne not_equal
cmp byte [ebp+variable+3], 0xaa
jne not_equal

Ideal future

• Standard comparison functions (strcmp, memcmp etc.) are annoying, as they hide

away all the meaningful state information.

• Potential compiler-based solution:

• Use extremely unrolled implementations of these functions, with a separate branch for every

N up to e.g. 4096.

• Compile in a separate instance of them for each call site.

• would require making sure that no generic wrappers exist which hide the real caller.

• still not perfect against functions which just compare memory passed by their callers by design, but a

good step forward nevertheless.

Unsolvable problems

• There are still some simple constructs which cannot be crossed by a simple coverage-

guided fuzzer:

uint32_t value = load_from_input();
if (value * value == 0x3a883f11) {
// Special branch.

}

• Previously discussed deoptimizations would be ineffective, since all bytes are dependent

on each other (you can’t brute-force them one by one).

• That’s basically where SMT solving comes into play, but this talk is about dumb fuzzing.

We have lots of input files, compiled target and ability to

measure code coverage.

What now?

Corpus management system

• One could want a coverage-guided corpus management system,

which would be used before fuzzing:

• to minimize an initial corpus of potentially gigantic sizes to a smaller, yet

equally valuable one.

• Input = N input files (for unlimited N)

• Output = M input files and information about their coverage (for a reasonably small M)

• Should be scalable.

Corpus management system

• And during fuzzing:

• to decide if a mutated sample should be added to the corpus, and recalculate

it if needed:

• Input = current corpus and its coverage, candidate samples and its coverage.

• Output = new corpus and its coverage (unmodified, or modified to include the candidate

sample).

• to merge two corpora into a single optimal one.

Prior work

• Corpus distillation resembles the Set cover problem, if we wanted to find

the smallest sub-collection of samples with coverage equal to that of the

entire set.

• The exact problem is NP-hard, so calculating the optimal solution is beyond possible

for the data we operate on.

• But we don’t really need to find the optimal solution. In fact, it’s probably better if

we don’t.

• There are polynomial greedy algorithms for finding logn approximates.

Prior work

Example of a simple greedy algorithm:

1. At each point in time, store the current corpus and coverage.

2. For each new sample X, check if it adds at least one new trace to the

coverage. If so, include it in the corpus.

3. (Optional) Periodically check if some samples are redundant and the total

coverage doesn’t change without them; remove them if so.

Prior work – drawbacks

• Doesn’t scale at all – samples need to be processed sequentially.

• The size and form of the corpus depends on the order in which inputs are

processed.

• We may end up with some unnecessarily large files in the final set, which is

suboptimal.

• Very little control over the volume–redundancy trade-off in the output

corpus.

My proposed design

For each execution trace we know, store N smallest samples which reach that trace.

The corpus consists of all files present in the structure.

In other words, we maintain a map<string, set<pair<string, int>>> object:

𝑡𝑟𝑎𝑐𝑒 𝑖𝑑𝑖 → 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑑1, 𝑠𝑖𝑧𝑒1 , 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑑2, 𝑠𝑖𝑧𝑒2 , … , 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑑𝑁, 𝑠𝑖𝑧𝑒𝑁

Proposed design illustrated (N=2)

1.pdf (size=10)

a.out+0x1111

a.out+0x2222

a.out+0x3333

a.out+0x4444

2.pdf (size=20)

a.out+0x1111

a.out+0x3333

a.out+0x5555

a.out+0x7777

4.pdf (size=40)

a.out+0x1111

a.out+0x2222

a.out+0x7777

3.pdf (size=30)

a.out+0x2222

a.out+0x4444

a.out+0x6666

a.out+0x7777

a.out+0x1111

a.out+0x1111

a.out+0x2222

a.out+0x3333

a.out+0x4444

a.out+0x5555

a.out+0x6666

a.out+0x7777

1.pdf (size=10)

1.pdf (size=10)

1.pdf (size=10)

1.pdf (size=10)

2.pdf (size=20)

2.pdf (size=20)

3.pdf (size=30)

3.pdf (size=30)

2.pdf (size=20)

3.pdf (size=30)

2.pdf (size=20) 3.pdf (size=30)

Key advantages

1. Can be trivially parallelized and run with any number of machines using the MapReduce model.

2. The extent of redundancy (and thus corpus size) can be directly controlled via the 𝑁 parameter.

3. During fuzzing, the corpus will evolve to gradually minimize the average sample size by design.

4. There are at least 𝑁 samples which trigger each trace, which results in a much more uniform coverage

distribution across the entire set, as compared to other simple minimization algorithms.

5. The upper limit for the number of inputs in the corpus is 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑐𝑒𝑠 ∗ 𝑁, but in practice most

common traces will be covered by just a few tiny samples. For example, all program initialization traces

will be covered by the single smallest file in the entire set (typically with size=0).

Some potential shortcomings

• Due to the fact that each trace has its smallest samples in the corpus, we will most likely end up

with some redundant, short files which don’t exercise any interesting functionality, e.g. for libpng:

89504E470D0A1A0A .PNG.... (just the header)

89504E470D0A1A02 .PNG.... (invalid header)

89504E470D0A1A0A0000001A0A .PNG......... (corrupt chunk header)

89504E470D0A1A0A0000A4ED69545874 .PNG........iTXt (corrupt chunk with a valid tag)

88504E470D0A1A0A002A000D7343414C .PNG.....*..sCAL (corrupt chunk with another tag)

• This is considered an acceptable trade-off, especially given that having such short inputs may

enable us to discover unexpected behavior in parsing file headers (e.g. undocumented but

supported file formats, new chunk types in the original format, etc.).

Corpus distillation – “Map” phase

Map(sample_id, data):

Get code coverage provided by "data"

for each trace_id:

Output(trace_id, (sample_id, data.size()))

3.pdf (size=30)

a.out+0x2222

a.out+0x4444

a.out+0x6666

a.out+0x7777

a.out+0x1111

4.pdf (size=40)

a.out+0x1111

a.out+0x2222

a.out+0x7777

Corpus distillation – “Map” phase

1.pdf (size=10)

a.out+0x1111

a.out+0x2222

a.out+0x3333

a.out+0x4444

2.pdf (size=20)

a.out+0x1111

a.out+0x3333

a.out+0x5555

a.out+0x7777

a.out+0x1111

a.out+0x2222

a.out+0x3333

a.out+0x4444

a.out+0x5555

a.out+0x6666

a.out+0x7777

1.pdf (size=10)

1.pdf (size=10)

1.pdf (size=10)

1.pdf (size=10)

2.pdf (size=20)

3.pdf (size=30)

3.pdf (size=30)

2.pdf (size=20)

4.pdf (size=40)

2.pdf (size=20)3.pdf (size=30)

2.pdf (size=20)3.pdf (size=30)

3.pdf (size=30)

4.pdf (size=40)

1.pdf (size=10)

a.out+0x1111

a.out+0x2222

a.out+0x3333

a.out+0x4444

2.pdf (size=20)

a.out+0x1111

a.out+0x3333

a.out+0x5555

a.out+0x7777

4.pdf (size=40)

Corpus distillation – “Reduce” phase

Reduce(trace_id, S = { 𝑠𝑎𝑚𝑝𝑙𝑒_𝑖𝑑1, 𝑠𝑖𝑧𝑒1 , … , 𝑠𝑎𝑚𝑝𝑙𝑒_𝑖𝑑𝑁 , 𝑠𝑖𝑧𝑒𝑁 } :

Sort set S by sample size (ascending)

for (i < N) && (i < S.size()):

Output(sample_idi)

Corpus distillation – “Reduce” phase

a.out+0x1111

a.out+0x2222

a.out+0x3333

a.out+0x4444

a.out+0x5555

a.out+0x6666

a.out+0x7777

1.pdf (size=10)

1.pdf (size=10)

1.pdf (size=10)

1.pdf (size=10)

2.pdf (size=20)

3.pdf (size=30)

3.pdf (size=30)

2.pdf (size=20)

4.pdf (size=40)

2.pdf (size=20)3.pdf (size=30)

2.pdf (size=20)3.pdf (size=30)

3.pdf (size=30)

4.pdf (size=40)

4.pdf (size=40)

Corpus distillation – “Reduce” phase

a.out+0x1111

a.out+0x2222

a.out+0x3333

a.out+0x4444

a.out+0x5555

a.out+0x6666

a.out+0x7777

1.pdf (size=10)

1.pdf (size=10)

1.pdf (size=10)

1.pdf (size=10)

2.pdf (size=20)

3.pdf (size=30)

3.pdf (size=30)

2.pdf (size=20)

4.pdf (size=40)

2.pdf (size=20) 3.pdf (size=30)

2.pdf (size=20) 3.pdf (size=30)

3.pdf (size=30)

4.pdf (size=40)

4.pdf (size=40)

Corpus distillation – “Reduce” phase

a.out+0x1111

a.out+0x2222

a.out+0x3333

a.out+0x4444

a.out+0x5555

a.out+0x6666

a.out+0x7777

1.pdf (size=10)

1.pdf (size=10)

1.pdf (size=10)

1.pdf (size=10)

2.pdf (size=20)

3.pdf (size=30)

3.pdf (size=30)

2.pdf (size=20)

4.pdf (size=40)

2.pdf (size=20) 3.pdf (size=30)

2.pdf (size=20) 3.pdf (size=30)

3.pdf (size=30)

4.pdf (size=40)

4.pdf (size=40)

Output

$ cat corpus.txt | sort

$ cat corpus.txt | sort | uniq

Corpus distillation – local postprocessing

1.pdf (size=10) 1.pdf (size=10) 1.pdf (size=10)

1.pdf (size=10)

2.pdf (size=20)3.pdf (size=30)

3.pdf (size=30) 2.pdf (size=20) 2.pdf (size=20) 3.pdf (size=30)

2.pdf (size=20)

3.pdf (size=30)

1.pdf (size=10) 1.pdf (size=10) 1.pdf (size=10) 1.pdf (size=10) 2.pdf (size=20)

3.pdf (size=30)3.pdf (size=30)2.pdf (size=20)

2.pdf (size=20)

3.pdf (size=30)2.pdf (size=20) 3.pdf (size=30)

1.pdf (size=10) 2.pdf (size=20) 3.pdf (size=30)

Corpus distillation – track record

• I’ve successfully used the algorithm to distill terabytes-large data sets into quality corpora well fit for fuzzing.

• I typically create several corpora with different 𝑁, which can be chosen from depending on available system

resources etc.

• Examples:

• PDF format, based on instrumented pdfium

• 𝑁 = 1, 1800 samples, 2.6 GB

• 𝑁 = 10, 12457 samples, 12 GB

• 𝑁 = 100, 79912 samples, 81 GB

• Fonts, based on instrumented FreeType2

• 𝑁 = 1, 608 samples, 53 MB

• 𝑁 = 10, 4405 samples, 526 MB

• 𝑁 = 100, 27813 samples, 3.4 GB

Corpus management – new candidate

MergeSample(sample, sample_coverage):

candidate_accepted = False

for each trace in sample_coverage:

if (trace not in coverage) || (sample.size() < coverage[trace].back().size()):

Insert information about sample at the specific trace

Truncate list of samples for the trace to a maximum of N

Set candidate_accepted = True

if candidate_accepted:

If candidate was accepted, perform a second pass to insert the sample in

traces where its size is not just smaller, but smaller or equal to another

sample. This is to reduce the total number of samples in the global corpus.

for each trace in sample_coverage:

if (sample.size() <= coverage[trace].back().size())

Insert information about sample at the specific trace

Truncate list of samples for the trace to a maximum of N

New candidate illustrated (N=2)

a.out+0x1111

a.out+0x2222

a.out+0x3333

a.out+0x4444

a.out+0x5555

a.out+0x6666

a.out+0x7777

1.pdf (size=10)

1.pdf (size=10)

1.pdf (size=10)

1.pdf (size=10)

2.pdf (size=20)

2.pdf (size=20)

3.pdf (size=30)

3.pdf (size=30)

2.pdf (size=20)

3.pdf (size=30)

2.pdf (size=20) 3.pdf (size=30)

5.pdf (size=20)

a.out+0x1111

a.out+0x3333

a.out+0x4444

a.out+0x6666

?

New candidate – first pass

a.out+0x1111

a.out+0x2222

a.out+0x3333

a.out+0x4444

a.out+0x5555

a.out+0x6666

a.out+0x7777

1.pdf (size=10)

1.pdf (size=10)

1.pdf (size=10)

1.pdf (size=10)

2.pdf (size=20)

2.pdf (size=20)

3.pdf (size=30)

2.pdf (size=20)

3.pdf (size=30)

2.pdf (size=20) 3.pdf (size=30)

5.pdf (size=20)

a.out+0x1111

a.out+0x3333

a.out+0x4444

a.out+0x6666

?
5.pdf (size=20)

5.pdf (size=20)

New candidate – second pass

a.out+0x1111

a.out+0x2222

a.out+0x3333

a.out+0x4444

a.out+0x5555

a.out+0x6666

a.out+0x7777

1.pdf (size=10)

1.pdf (size=10)

1.pdf (size=10)

1.pdf (size=10)

3.pdf (size=30)

2.pdf (size=20)

3.pdf (size=30)

2.pdf (size=20) 3.pdf (size=30)

5.pdf (size=20)

a.out+0x1111

a.out+0x3333

a.out+0x4444

a.out+0x6666

?
5.pdf (size=20)

5.pdf (size=20)

5.pdf (size=20)

5.pdf (size=20)

Corpus management: merging two corpora

Trivial to implement by just including the smallest 𝑁 samples for each trace

from both corpora being merged.

Trophy – Wireshark

• I’ve been fuzzing Wireshark since November 2015.

• Command-line tshark utility built with ASAN and AsanCoverage.

• 35 vulnerabilities discovered, reported and fixed so far.

• Initially started with some samples from the project’s SampleCaptures page.

• 297 files, 233 MB total, 803 kB average file size, 9.53 kB median file size.

• Over several months of coverage-guided fuzzing with the discussed algorithms,

the corpus has dramatically evolved.

• 77373 files, 355 MB total, 4.69 kB average file size, 47 b median file size.

https://wiki.wireshark.org/SampleCaptures

Trophy – Wireshark

• The nature of the code base makes it extremely well fit for dumb, coverage-

guided fuzzing.

• A vast number of dissectors.

• Mostly written in C.

• Operates on structurally simple data (wire protocols), mostly consecutive bytes read from the

input stream.

• Makes it easy to brute-force through the code.

• Generally great test target for your fuzzer, at least the version from a few months

back.

Trophy – Wireshark

Trophy – Adobe Flash

• Have been fuzzing Flash for many years now (hundreds of

vulnerabilities reported), but only recently started targeting the

ActionScript Loader() class.

• Official documentation only mentions JPG, PNG, GIF and SWF as

supported input formats:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Loader.html

Trophy – Adobe Flash

• After several hours of fuzzing, I observed two sudden peaks in the number of

covered traces.

• The fuzzer discovered the “ATF” and “II” signatures, and started generating valid

ATF (Adobe Texture Format for Stage3D) files, later with embedded JXR (JPEG XR)!

• Two complex file formats whose support is not documented anywhere, as far as I searched.

• Immediately after, we started to observe tons of interesting crashes to pop up.

• 7 vulnerabilities fixed by Adobe so far.

Corpus post-processing

• If the files in your corpus are stored in a way which makes them difficult to mutate

(compression, encryption etc.), some preprocessing may be in order:

• SWF applets are typically stored in LZMA-compressed form (“CWS” signature), but may be

uncompressed to original form (“FWS” signature).

• PDF documents typically have most binary streams compressed with Deflate or other algorithms,

but may be easily decompressed.

pdftk doc.pdf output doc.unc.pdf uncompress

• Type 1 fonts are always “encrypted” with a simple cipher and a constant key: can be decrypted

prior to fuzzing.

• And so on…

Running the target

Command-line vs graphical applications

• Generally preferred for the target program to be a command-line utility.

• Quite common on Linux, less so on Windows.

• Most open-source libraries ship with ready testing tools, which may provide great or

poor coverage of the interfaces we are interested in fuzzing.

• In case of bad or non-existent executable tools, it definitely pays off to write a thorough one

on your own.

• Much cleaner in terms of interaction, logging, start-up time, etc.

• Nothing as annoying as having to develop logic to click through various application prompts,

warnings and errors.

Graphical applications on Linux

• On Linux, if you have no other choice but to run the target in graphical mode (most likely closed-

source software, otherwise you do have a choice), you can use Xvfb.

• X virtual framebuffer.

• Trivial to start the server: $ Xvfb :1

• Equally easy to start the client: $ DISPLAY=:1 /path/to/your/app

• Pro tip: for some applications, the amount of input data processed depends on the amount of

data displayed on the screen.

• The case of Adobe Reader.

• In such cases, make your display as large as possible: $ Xvfb –screen 0 8192x8192x24 :1.

• In command line, set the Reader window geometry to match the display resolution:

$ acroread –geometry 500x8000.

Graphical programs have command-line
options, too!
$./acroread -help

Usage: acroread [options] [list of files]

Run 'acroread -help' to see a full list of available command line options.

Options:

--display=<DISPLAY> This option specifies the host and display to use.

--screen=<SCREEN> X screen to use. Use this options to override the screen part of the DISPLAY environment

variable.

--sync Make X calls synchronous. This slows down the program considerably.

-geometry [<width>x<height>][{+|-}<x offset>{+|-}<y offset>] Set the size and/or location of the document windows.

-help Prints the common command-line options.

-iconic Launches in an iconic state on the desktop.

-info Lists out acroread Installation Root, Version number, Language.

-tempFile Indicates files listed on the command line are temporary files and should not be put in

the recent file list.

-tempFileTitle <title> Same as -tempFile, except the title is specified.

-toPostScript Converts the given pdf_files to PostScript.

-openInNewInstance It launches a new instance of acroread process.

-openInNewWindow Same as OpenInNewInstance. But it is recommended to use OpenInNewInstance. openInNewWindow

will be deprecated.

-installCertificate <server-ip> <server-port> Fetches and installs client-side certificates for authentication to access the server

while creating secured connections.

-installCertificate [-PEM|-DER] <PathName> Installs the certificate in the specified format from the given path to the Adobe Reader

Certificate repository.

-v, -version Print version information and quit.

/a Switch used to pass the file open parameters.

…

While we’re at Adobe Reader…

• We performed lots of Adobe Reader for Linux fuzzing back in 2012 and 2013.

• Dozens of bugs fixed as a result.

• At one point Adobe discontinued Reader’s support for Linux, last version being

9.5.5 released on 5/10/13.

• In 2014, I had a much better PDF corpus and mutation methods than before.

• But it was still much easier for me to fuzz on Linux…

• Could I have any hope that crashes from Reader 9.5.5 for Linux would be reproducible on

Reader X and XI for Windows / OS X?

766 crashes in total

• 11 of them reproduced in then-latest versions of Adobe Reader for

Windows (fixed in APSB14-28, APSB15-10).

When the program misbehaves…

• There are certain behaviors undesired during fuzzing.

• Installation of generic exception handlers, which implement their own logic instead

of letting the application crash normally.

• Attempting to establish network connections.

• Expecting user interaction.

• Expecting specific files to exist in the file system.

• On Linux, all of the above actions can be easily mitigated with a dedicated

LD_PRELOAD shared object.

Disabling custom exception handling

sighandler_t signal(int signum, sighandler_t handler) {

return (sighandler_t)0;

}

int sigaction(int signum, const void *act, void *oldact) {

return 0;

}

Disabling network connections

int socket(int domain, int type, int protocol) {

if (domain == AF_INET || domain == AF_INET6) {

errno = EACCES;

return -1;

}

return org_socket(domain, type, protocol);

}

… and so on.

Fuzzing the command line

• Some projects may have multiple command line flags which we might want to flip

randomly (but deterministically) during the fuzzing.

• In open-source projects, logic could be added to command-line parsing to seed the

options from the input file.

• Not very elegant.

• Would have to be maintained and merged with each subsequent fuzzed version.

• Solution: external target launcher

• Example: hash the first 4096 bytes of the input file, randomize flags based on that seed, call

execve().

FFmpeg command line

$ ffmpeg -y -i /path/to/input/file -f <output format> /dev/null

FFmpeg available formats

$./ffmpeg –formats

File formats:

D. = Demuxing supported

.E = Muxing supported

--

D 3dostr 3DO STR

E 3g2 3GP2 (3GPP2 file format)

E 3gp 3GP (3GPP file format)

D 4xm 4X Technologies

<300 lines omitted>

D xvag Sony PS3 XVAG

D xwma Microsoft xWMA

D yop Psygnosis YOP

DE yuv4mpegpipe YUV4MPEG pipe

FFmpeg wrapper logic

char * const args[] = {

ffmpeg_path,

"-y",

"-i",

sample_path,

"-f",

encoders[hash % ARRAY_SIZE(encoders)],

"/dev/null",

NULL

};

execve(ffmpeg_path, args, envp);

Always make sure you’re not losing cycles

• FreeType2 has a convenient command-line utility called ftbench.

• Runs provided font through 12 tests, exercising various library API interfaces.

• As the name implies, it is designed to perform benchmarking.

• When you run it with no special parameters, it takes a while to complete:

$ time ftbench /path/to/font
…
real 0m25.071s
user 0m23.513s
sys 0m1.522s

Here’s the reason

$ ftbench /path/to/font

ftbench results for font `/path/to/font'

family: Family
style: Regular

number of seconds for each test: 2.000000

...

executing tests:
Load 50.617 us/op
Load_Advances (Normal) 50.733 us/op
Load_Advances (Fast) 0.248 us/op
Load_Advances (Unscaled) 0.217 us/op
Render 22.751 us/op
Get_Glyph 5.413 us/op
Get_CBox 1.120 us/op
Get_Char_Index 0.326 us/op
Iterate CMap 302.348 us/op
New_Face 392.655 us/op
Embolden 18.072 us/op
Get_BBox 6.832 us/op

It didn’t strike me for a long time…

• Each test was running for 2 seconds, regardless of how long a single iteration took.

• The -c 1 flag to the rescue:

number of iterations for each test: at most 1

number of seconds for each test: at most 2.000000

…

real 0m1.748s

user 0m1.522s

sys 0m0.124s

• And that’s for a complex font, the speed up for simple ones was 100x and more.

• Still managed to find quite a few bugs with the slow fuzzing.

And when you have a fast target…

• Some fuzzing targets are extremely fast.

• Typically self-contained, open-source libraries with a simple interface, e.g. regex

engines, decompressors, image format implementations etc.

• Each iteration may take much less than 1ms, potentially enabling huge iterations/s

ratios.

• In these cases, the out-of-process mode becomes a major bottleneck, as a

process start up may take several milliseconds, resulting in most time spent

in execve() rather than the tested code itself.

And when you have a fast target…

• Solution #1: the Fork Server, as first introduced by AFL in October 2014, implemented by Jann

Horn.

• execve() once to initialize the process address space, then only fork() in a tight loop directly before

main().

• Detailed description on lcamtuf’s blog: Fuzzing random programs without execve().

• Solution #2: in-process fuzzing.

• Relatively easy to achieve with AddressSanitizer, SanitizerCoverage and their programmatic API.

• LibFuzzer is a ready to use in-process, coverage-guided fuzzer developed by the author of the two projects

mentioned above.

• One of the two options is extremely encouraged for very fast targets, as they may easily result in a

speed up of 2 – 10x and more.

https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html

Mutating data

Mutating inputs

• Obviously highly dependent on the nature of the input data.

• Dedicated mutation algorithms may be better then generic ones, if designed

properly.

• Sometimes even required, if the data is structured in a very peculiar format

which gets trivially corrupted by applying random mutations.

Mutating inputs

• In most scenarios, however, universal approaches do very well for most

real-world file format parsers.

• As evidenced by hundreds of vulnerabilities discovered by such fuzzers.

• If parts of the format are sensitive or provide a skeleton for the rest of the data, it

might be easier to exclude them from mutations, or perform post-mutation fixups.

• Writing a dedicated mutator / protocol specification / etc. also puts us at risk of the

human factor – we may fail to think of some constraints which could trigger crashes.

• Generic, dumb mutations will never fail us: they may not hit a specific condition due to

probability, but surely not because of our stupidity.

Mutating inputs – algorithms

• There are a few field-tested set of mutators which appear to be quite effective for binary blobs,

especially in combination with coverage guidance.

• bitflipping – flipping between 1 and 4 consecutive bits in a specific byte.

• byteflipping – completely replacing a specific byte with a random one.

• special ints – insertion of „special integers” of width 2 and 4 (INT_MIN, INT_MAX etc.) in different

endianness.

• add subtract binary – binary addition and subtraction of random values at random offsets in the stream.

• chunk spew – taking a data chunk from one location in the input and inserting it into another one.

• append / truncate – appending data (random or based on existing input) at the end of the sample, or

truncating it to a specific size.

Mutating inputs – algorithms

• It still pays off to have some text-specific mutators in your arsenal, too.

• flip numbers – increasing, decreasing, or completely replacing textual numbers

found in the input stream.

• attribute mangle – automatically detecting the structure of tags and attributes in the

input stream, and removing them or shuffling around.

• Both above algorithms work great e.g. with PDF files (together with regular mutators

to flip bits in the embedded binary streams).

• And of course let’s not forget about the great Radamsa mutator.

Mutation ratios

• If we don’t make or enforce any assumptions regarding the size of the inputs, performing a fixed

number of mutations doesn’t sound like a great idea.

• Modifying 4 bytes out of 16 obviously has a completely different impact than changing 4 in 1048576 (one

megabyte).

• Instead, a percentage amount of data can be malformed, which makes the number of mutations

proportional to the input size.

• Having fixed ratios is not great either.

• Various file formats have various structures, data densities, metadata/data ratios etc.

• Various software have various tolerance towards faults in the processed input.

• As a result, I believe mutation ratios should be adjusted on a per-algorithm, per-target and per-format basis.

Mutation ratios

• To give the fuzzer even more freedom (and potentially trigger more

interesting program states), the ratio doesn’t even have to be fixed for each

{algorithm, target, format}.

• We can just decide on a range of ratios to pick from during each iteration.

• Furthermore, we can allow the chaining of different mutation algorithms,

and have a list of all the different chains.

• Let’s call this overall specification „mutation strategy”.

When is a mutation strategy is optimal?

• Based on experimental data and experience, my belief is that a

mutation strategy is most optimal if the target succeeds to fully

process the mutated data ~50% of the time, and likewise fails ~50% of

the time.

• This means that that mutated samples are on the verge of being correct,

which seems to be the right balance between „always fails” (too aggressive)

and „always passes” (too loose).

Automatic mutation evaluation

• With the help of code coverage guidance, the need for manual mutation

strategy configuration could be completely avoided.

• The fuzzer could autonomously determine the most effective algorithms, ratios and

their chainings.

• Together with portions of the input most useful to mutate in the first place, as an

extension to lcamtuf’s Automatically inferring file syntax with afl-analyze.

• This would massively simplify the fuzzing process for regular users, and also reduce

out one more human factor from the pipeline.

http://lcamtuf.blogspot.com/2016/02/say-hello-to-afl-analyze.html

The Windows Kernel font fuzzing
effort

Doing it in Bochs

• As you may have heard, I am a big fan of doing things in Bochs (the

software x86 emulator written in C++).

• Bochspwn: Identifying 0-days via System-Wide Memory Access Pattern

Analysis

• Dragon Sector: SIGINT CTF 2013: Task 0x90 (300 pts)

• Not very fast (up to ~100 MHz effective frequency), but we can still

scale against that.

http://j00ru.vexillium.org/?p=2084
http://blog.dragonsector.pl/2013/07/sigint-ctf-2013-task-0x90-300-pts.html

Doing it in Bochs

• Offers some very useful properties:

• Can be run on any Linux system, even with no virtualization support available.

• Provides an extensive, documented instrumentation API to interact with the guest.

• Guest  host communication channel.

• Blue Screen of Death detection.

• Other virtual machine introspection, if needed.

• Runs Windows out of the box.

• Trivial configuration, which I was already familiar with.

Let’s do it!

The input data

• This part was the easiest one – reuse an existing corpus based on

instrumented FreeType2 fuzzing.

• Had to extract TrueType and OpenType files, as other (especially the

more exotic ones) are not supported by the Windows kernel.

What about .FON and Type1 PostScript fonts?

• We initially also fuzzed .FON bitmap fonts.

• The only recurring discovery there was a divide-by-zero system crash, which has already been

reported to Microsoft long ago. 

• There were several reasons not to target Type 1:

• Windows requires two corresponding files (.PFM and .PFB) to load a single font.

• Structurally very simple, the most complex part are CharStrings, which have already been

manually audited to death by myself.

• Most of the font handling logic is shared in ATMFD.DLL for both Type1 and OTF formats.

Mutating TTF & OTF

• Design decision: the mutations would be applied in the Bochs

instrumentation (on the host).

• Makes it much faster to mutate at native speed instead of in emulated code.

• In case of a guest crash, the system automatically knows which sample caused

it.

But… how to mutate them properly?

• Both TTF and OTF follow a common chunk structure: SFNT.

• Each file consists of a number of tables.

SFNT tables

• Some tables are common for both TTF and OTF, others are specific to just

one of the formats.

• Some tables are required and must be present, others are optional.

• There are ~50 total in existence (but ~20 actually important ones).

• One thing in common: they are all different.

• Different length, structure, importance, nature of data etc.

• It only seems reasonable to treat each of them individually rather than equally.

How it’s usually done

The typical scheme I’ve seen in nearly every font fuzzing presentation:

1. Mutate the TTF/OTF file as a whole, not considering its internal structure.

2. Fix up the table checksums in the header, so that Windows doesn’t

immediately refuse them.

Mutating TTF & OTF my way

• I’ve gone through my font corpus to discover that on average, there

are ~10 tables whose modification affects the success of its loading

and displaying.

• Hence, if we want the overall mutated font’s loadability to stay

around 50%, the statistical correctness of each table should be:

10
0.5 ≈ 0.93

Mutating TTF & OTF my way

• I wrote a simple program to determine the desired mutation ratio per

each algorithm and table in order to maintain the ~93% correctness,

on many samples, and then averaged the results.

• This resulted in the following table.

SFNT table mutation ratios
Bitflipping Byteflipping Chunkspew Special Ints Add Sub Binary

hmtx 0.1 0.8 0.8 0.8 0.8

maxp 0.009766 0.078125 0.125 0.056641 0.0625

OS/2 0.1 0.2 0.4 0.2 0.4

post 0.004 0.06 0.2 0.15 0.03

cvt 0.1 0.1 0.1 0.1 0.1

fpgm 0.01 0.01 0.01 0.01 0.01

glyf 0.00008 0.00064 0.008 0.00064 0.00064

prep 0.01 0.01 0.01 0.01 0.01

gasp 0.1 0.1 0.1 0.1 0.1

CFF 0.00005 0.0001 0.001 0.0002 0.0001

EBDT 0.01 0.08 0.2 0.08 0.08

EBLC 0.001 0.001 0.001 0.001 0.001

EBSC 0.01 0.01 0.01 0.01 0.01

GDEF 0.01 0.01 0.01 0.01 0.01

GPOS 0.001 0.008 0.01 0.008 0.008

GSUB 0.01 0.08 0.01 0.08 0.08

hdmx 0.01 0.01 0.01 0.01 0.01

kern 0.01 0.01 0.01 0.01 0.01

LTSH 0.01 0.01 0.01 0.01 0.01

VDMX 0.01 0.01 0.01 0.01 0.01

vhea 0.1 0.1 0.1 0.1 0.1

vmtx 0.1 0.1 0.1 0.1 0.1

mort 0.01 0.01 0.01 0.01 0.01

Mutating TTF & OTF my way

• As mentioned before, I dislike fixed ratios, so I eventually set the

range to 0, 2 × 𝑅 , 𝑅 being the calculated ideal ratio, in order to

insert more randomness into how much data is actually mutated.

• With a trivial piece of code to disassemble, modify and reassemble

SNFT files, I was then able to mutate fonts in a meaningful way.

Generating TTF

• Even with a semi-smart approach to dumb fuzzing, some bugs just cannot be

found by mutating existing, valid files.

• One example: TTF programs.

• Dedicated “virtual machine” with its own operand stack, complex font-specific state

structure, and 100+ instructions.

• Quite fragile: expects some basic program consistency (e.g. sufficient arguments on the stack

for each instruction), otherwise the interpreter exits early.

• Frequent source of bugs in the past, but only due to trivial errors in the handlers.

• Issues triggered by more complex constructs impossible to trigger with bitflipping.

The solution: TTF program generator!

Steps taken:

• read the The TrueType Instruction Set docs to get familiar with all instructions.

• spent several hours writing the program generator in ~500 lines of Python.

• converted all files in the corpus from TTF/OTF to TTX (XML font representation generated by

the fonttools project).

• coupled the generator with an ElementTree XML parser, in order to add the generated

instruction stream between all <assembly></assembly> tags (and some other minor

processing).

• added logic to the Bochs instrumentation to run the generated followed by font compiler.

https://github.com/behdad/fonttools

Found one extra bug with the generator.

Host – guest communication channel

• Communication between environments implemented via instrumented LFENCE

instruction.

• void bx_instr_after_execution(unsigned cpu, bxInstruction_c *i);

• Operation code in EAX, input/output via ECX, EDX.

• Supported operations: REQUEST_DATA, SEND_STATUS, DBG_PRINT.

• Had to be careful to have all memory regions passed via pointer to Bochs be

mapped in “physical” memory, so that the instrumentation can write data there.

Displaying mutated fonts for best coverage

• Main goal: make sure that all data in the font is processed by the

kernel.

• Request all available LOGFONTs via the undocumented

GetFontResourceInfoW call.

• A first, unmodified iteration is required.

• List all glyphs supported by the font via the GetFontUnicodeRanges call.

• Display all of them in several variations (various width, height and properties).

Optimizing the guest operating system

• A number of actions to reduce the volume and background execution in Windows (every cycle is important):

1. Changed the theme to Classic.

2. Disabled all services which were not absolutely necessary for the system to work.

3. Set the boot mode to Minimal with VGA, so that only core drivers were loaded.

4. Uninstalled all default Windows components (games, web browser, etc.).

5. Set the “Adjust for best performance” option in System Properties.

6. Changed the default shell in registry from explorer.exe to the fuzzing harness.

7. Removed all items from autostart.

8. Disabled disk indexing.

9. Disabled paging.

10. Removed most unnecessary files and libraries from C:\Windows.

Detecting system bugchecks

void bx_instr_reset(unsigned cpu, unsigned type);

+

Reproducing crashes

• Reproduction performed on a VirtualBox VM with the same installation as

Bochs, with some very simple logic:

• Check if there is a crash dump in C:\Windows\Minidump.

• If so, generate a textual !analyze –v report with WinDbg, and copy together with

the dump and last processed file to external directory.

• Test the next sample with the test harness a few times (8 or more).

• If the system doesn’t crash, restart it manually to avoid propagating any pool

corruptions across different samples.

Minimizing offending samples

• Two stages:

• Table-granular minimization to determine which malformed tables are

causing the crash.

• Byte-granular minimization to check what the exact mutations are.

Results – summary

0 1 2 3 4 5 6 7 8 9

Stack-based buffer overflow

Use of uninitialized memory

Use-after-free

Pool-based out-of-bounds read

Pool-based buffer overflow

Results – timeline

• 21 May 2015: iteration #1, 11 vulnerabilities reported (4 TTF, 7 OTF).

• 18 Aug 2015: iteration #2, 2 vulnerabilities reported (2 TTF).

• 22 Dec 2015: iteration #3, 3 vulnerabilities reported (1 TTF, 2 OTF).

• 29 June 2016: iteration #4, 2 vulnerabilities reported (2 TTF).

CVE-2016-0145 fix delayed by a month,
because…

Closing thoughts

• Hopefully after this effort, no more bugs are lurking there, right?

• This will become less important, as Microsoft has moved font

handling out of the privileged kernel context in Windows 10.

• Remember it can still be used as an RCE vector, keeping it a sensitive

code region.

Thanks!

@j00ru

http://j00ru.vexillium.org/

j00ru.vx@gmail.com

http://twitter.com/j00ru
http://j00ru.vexillium.org/
mailto:j00ru.vx@gmail.com

