
Windows Metafiles
An Analysis of the EMF Attack Surface & Recent Vulnerabilities

Mateusz “j00ru” Jurczyk

PacSec, Tokyo 2016

PS> whoami

• Project Zero @ Google

• Low-level security researcher with interest in all sorts of vulnerability

research and software exploitation

• http://j00ru.vexillium.org/

• @j00ru

http://j00ru.vexillium.org/
http://twitter.com/j00ru

Agenda

• Windows Metafile primer, GDI design, attack vectors.

• Hacking:

• Internet Explorer (GDI)

• Windows Kernel (ATMFD.DLL)

• Microsoft Office (GDI+)

• VMware virtualization (Print Spooling)

• Final thoughts.

Windows GDI & Metafile primer

Windows GDI

• GDI stands for Graphics Device Interface.

• Enables user-mode applications to use graphics and formatted text on video

displays and printers.

• Major part of the system API (nearly 300 documented functions).

• Present in the OS since the very beginning (Windows 1.0 released in 1985).

• One of the oldest subsystems, with most of its original code still running 31 years later.

• Concidentally (?) also one of the most buggy components.

How to draw

1. Grab a handle to a Device Context (HDC).

• Identifies a persistent container of various graphical settings (pens, brushes,

palettes etc.).

• Can be used to draw to a screen (most typically), a printer, or a metafile.

• Most trivial example:

HDC hdc = GetDC(NULL);

(obtains a HDC for the entire screen)

How to draw

2. Use a drawing function.

Ellipse(hdc, 100, 100, 500, 300); RoundRect(hdc, 100, 100, 500, 500, 100, 100);

Windows GDI – simplified architecture

app1.exe app3.exe app4.exeapp2.exe

GDI+ (gdiplus.dll)

User-mode GDI (gdi32.dll)

Kernel-mode GDI (win32k.sys)

NT OS Kernel Printer Drivers Font DriversDisplay Drivers

ring-3

ring-0

User to kernel API mappings

Most user-mode GDI functions have their direct counterparts in the

kernel:

GDI32.DLL win32k.sys

AbortDoc NtGdiAbortDoc

AbortPath NtGdiAbortPath

AddFontMemResourceEx NtGdiAddFontMemResourceEx

AddFontResourceW NtGdiAddFontResourceW

AlphaBlend NtGdiAlphaBlend

... ...

Windows Metafiles

Core idea:

Store images as lists of records directly describing GDI calls.

Windows Metafiles

• Pros:

• requires little computation work from the rasterizer itself, as it only has to call GDI functions

with the supplied parameters.

• provides an official way of serializing sets of GDI operations into reproducible images.

• can work as a vector format, raster, or both.

• Cons:

• only works on Windows, unless full implementation of the supported graphical GDI

operations is implemented externally.

First version: WMF

• The original metafiles (WMF = Windows MetaFiles).

• Introduced with Windows 3.0 in 1990.

• Not as ancient as GDI itself, but almost so.

• Initially documented in Windows 3.1 SDK (1994, volume 4).

• A revised, more complete specification was released in 2006, and has been

maintained since then.

• A description of all records and structures can be found in the MS-WMF document.

WMF files – 60 supported API functions

AnimatePaletteArc
BitBlt
Chord
CreateBrushIndirect
CreateDIBPatternBrush
CreateFontIndirect
CreatePalette
CreatePatternBrush
CreatePenIndirect
DeleteObject
Ellipse
Escape
ExcludeClipRect
ExtFloodFill
ExtTextOut
FillRgn
FloodFill
FrameRgn
IntersectClipRect
InvertRgn

LineToMoveToEx
OffsetClipRgn
OffsetViewportOrgEx
OffsetWindowOrgEx
PaintRgn
PatBlt
Pie
Polygon
Polyline
PolyPolygon
RealizePalette
Rectangle
ResizePalette
RestoreDC
RoundRect
SaveDC
ScaleViewportExtEx
ScaleWindowExtEx
SelectClipRgn
SelectObject

SelectPaletteSetBkColor
SetBkMode
SetDIBitsToDevice
SetMapMode
SetMapperFlags
SetPaletteEntries
SetPixel
SetPolyFillMode
SetROP2
SetStretchBltMode
SetTextAlign
SetTextCharacterExtra
SetTextColor
SetTextJustification
SetViewportOrgEx
SetWindowExtEx
SetWindowOrgEx
StretchBlt
StretchDIBits
TextOut

Some seemingly interesting ones

AnimatePaletteArc
BitBlt
Chord
CreateBrushIndirect
CreateDIBPatternBrush
CreateFontIndirect
CreatePalette
CreatePatternBrush
CreatePenIndirect
DeleteObject
Ellipse
Escape
ExcludeClipRect
ExtFloodFill
ExtTextOut
FillRgn
FloodFill
FrameRgn
IntersectClipRect
InvertRgn

LineToMoveToEx
OffsetClipRgn
OffsetViewportOrgEx
OffsetWindowOrgEx
PaintRgn
PatBlt
Pie
Polygon
Polyline
PolyPolygon
RealizePalette
Rectangle
ResizePalette
RestoreDC
RoundRect
SaveDC
ScaleViewportExtEx
ScaleWindowExtEx
SelectClipRgn
SelectObject

SelectPaletteSetBkColor
SetBkMode
SetDIBitsToDevice
SetMapMode
SetMapperFlags
SetPaletteEntries
SetPixel
SetPolyFillMode
SetROP2
SetStretchBltMode
SetTextAlign
SetTextCharacterExtra
SetTextColor
SetTextJustification
SetViewportOrgEx
SetWindowExtEx
SetWindowOrgEx
StretchBlt
StretchDIBits
TextOut

WMF: there’s more!

• The format also supports a number of records which do not directly

correspond to GDI functions.

• Header with metadata.

• Embedded EMF.

• Records directly interacting with the printer driver / output device.

• End-of-file marker.

• ...

WMF: there’s more!

• Generally, the most interesting records can be found in two sections:

Windows Metafile – example

...

R0003: [017] META_SETMAPMODE (s=12) {iMode(8=MM_ANISOTROPIC)}

R0004: [011] META_SETVIEWPORTEXTEX (s=16) {szlExtent(1920,1200)}

R0005: [009] META_SETWINDOWEXTEX (s=16) {szlExtent(1920,1200)}

R0006: [010] META_SETWINDOWORGEX (s=16) {ptlOrigin(-3972,4230)}

R0007: [009] META_SETWINDOWEXTEX (s=16) {szlExtent(7921,-8462)}

R0008: [049] META_CREATEPALETTE (s=960) {ihPal(1) LOGPAL[ver:768, entries:236]}

R0009: [048] META_SELECTPALETTE (s=12) {ihPal(Table object: 1)}

R0010: [052] META_REALIZEPALETTE (s=8)

R0011: [039] META_CREATEBRUSHINDIRECT (s=24) {ihBrush(2), style(0=BS_SOLID, color:0x00FFFFFF)}

R0012: [037] META_SELECTOBJECT (s=12) {Table object: 2=OBJ_BRUSH.(BS_SOLID)}

R0013: [037] META_SELECTOBJECT (s=12) {Stock object: 8=OBJ_PEN.(PS_NULL)}

R0014: [019] META_SETPOLYFILLMODE (s=12) {iMode(1=ALTERNATE)}

R0015: [086] META_POLYGON16 (s=320) {rclBounds(89,443,237,548), nbPoints:73, P1(-2993,398) - Pn(-2993,398)}

R0016: [038] META_CREATEPEN (s=28) {ihPen(3), style(0=PS_SOLID | COSMETIC), width(0), color(0x00000000)}

...

WMF: still very obsolete

• Even though already quite complex, the format didn’t turn out to be

very well thought-out for modern usage.

• It’s still supported by GDI, and therefore some of its clients (e.g.

Microsoft Office, Paint, some default Windows apps).

• Has been basically forgotten in any real-world use-cases for the last

decade or more.

WMF: discouraged from use

• Even Microsoft gives a lot of reasons not to use it anymore:

Next up: EMF (Enhanced MetaFiles)

• Already in 1993, Microsoft released an improved revision of the image

format, called EMF.

• Documented in the official MS-EMF specification.

• Surpasses WMF in a multitude of ways:

• uses 32-bit data/offset width, as opposed to just 16 bits.

• device independent.

• supports a number of new GDI calls, while maintaining backward compatibility with

old records.

Enhanced Metafile – example

...
R0121: [039] EMR_CREATEBRUSHINDIRECT (s=24) {ihBrush(2), style(1=BS_NULL)}
R0122: [037] EMR_SELECTOBJECT (s=12) {Table object: 2=OBJ_BRUSH.(BS_NULL)}
R0123: [040] EMR_DELETEOBJECT (s=12) {ihObject(1)}
R0124: [090] EMR_POLYPOLYLINE16 (s=44) {rclBounds(128,-256,130,-254), nPolys:1, nbPoints:2, P1(386,-765) - Pn(386,-
765)}
R0125: [019] EMR_SETPOLYFILLMODE (s=12) {iMode(1=ALTERNATE)}
R0126: [039] EMR_CREATEBRUSHINDIRECT (s=24) {ihBrush(1), style(0=BS_SOLID, color:0x00A86508)}
R0127: [037] EMR_SELECTOBJECT (s=12) {Table object: 1=OBJ_BRUSH.(BS_SOLID)}
R0128: [040] EMR_DELETEOBJECT (s=12) {ihObject(2)}
R0129: [058] EMR_SETMITERLIMIT (s=12) {Limit:0.000}
R0130: [091] EMR_POLYPOLYGON16 (s=60) {rclBounds(127,-259,138,-251), nPolys:1, nbPoints:6, P1(384,-765) - Pn(384,-
765)}
R0131: [040] EMR_DELETEOBJECT (s=12) {ihObject(1)}
R0132: [040] EMR_DELETEOBJECT (s=12) {ihObject(3)}
R0133: [014] EMR_EOF (s=20) {nPalEntries:0, offPalEntries:16, nSizeLast:20}
...

EMF: interesting records at first glance

EMF: interesting records at first glance

EMF: interesting records at first glance

EMF: current support

• Despite being only 3 years younger than WMF, EMF has remained in

current usage until today.

• Not as a mainstream image format, but still a valid attack vector.

• A variety of attack vectors:

• Win32 GDI clients – most notably Internet Explorer.

• GDI+ clients – most notably Microsoft Office.

• Printer drivers, including those used in virtualization technology.

Toolset – examination (EMFexplorer)

Toolset – examination (MetafileExplorer)

Toolset – reading & writing (pyemf)

#!/usr/bin/env python
import os
import pyemf
import sys

def main(argv):
if len(argv) != 2:

print "Usage: %s /path/to/poc.emf" % argv[0]
sys.exit(1)

emf = pyemf.EMF(width = 100, height = 100, density = 1)
emf.CreateSolidBrush(0x00ff00)
emf.SelectObject(1)
emf.Polygon([(0, 0), (0, 100), (100, 100), (100, 0)])

emf.save(argv[1])

if __name__ == "__main__":
main(sys.argv)

The latest: EMF+

• GDI had all the fundamental primitives, but lacked many complex features

(anti-aliasing, floating point coords, support for JPEG/PNG etc.).

• Windows XP introduced a more advanced library called GDI+ in 2001.

• Built as a user-mode gdiplus.dll library, mostly on top of regular GDI (gdi32.dll).

• Provides high-level interfaces for C++ and .NET, therefore is much easier to use.

• GDI+ itself is written in C++, so all the typical memory corruption bugs still apply.

The latest: EMF+

• Since there is a new interface, there must also be a new image format with its

serialized calls.

• Say hi to EMF+!

• Basically same as EMF, but representing GDI+ calls.

• Come in two flavours: EMF+ Only and EMF+ Dual.

• „Only” contains exclusively GDI+ records, and can only be displayed with GDI+.

• „Dual” stores the picture with two sets of records, compatible with both GDI/GDI+ clients.

Formats and implementations in Windows

• Three formats in total to consider: WMF, EMF, EMF+.

• Three libraries: GDI, GDI+ and MF3216.

• MF3216.DLL is a system library with just one meaningful exported function:

ConvertEmfToWmf.

• Used for the automatic conversion between WMF/EMF formats in the Windows

clipboard.

• „Synthesized” formats CF_METAFILEPICT and CF_ENHMETAFILE.

• No bugs found there.

Formats and implementations in Windows

Library Supported formats

GDI WMF, EMF

GDI+ WMF, EMF, EMF+

MF3216 EMF

In this talk, we’ll focus on auditing and exploiting the EMF parts, as this

is where the most (interesting) issues were discovered.

Attack scenario

• In all cases, Metafiles are processed in the user-mode context of the renderer process, in the

corresponding DLL.

• GDI, GDI+ and MF3216 iterate through all input records and translate them into GDI/GDI+ calls.

• Memory corruption bugs will result in arbitrary code execution in that context.

• Important: Metafiles directly operate on the GDI context of the renderer.

• Can create, delete, change and use various GDI objects on behalf of the process.

• In theory, it should only have access to its own objects and be self-contained.

• However, any bugs in the implementation could enable access to external graphics objects used by the

program.

• A peculiar case of „privilege escalation”.

Attack scenario: GDI context priv. escal.

renderer.exe GDI objects EMF #2 GDI objects EMF #3 GDI objects

EMF #1 file

EMF #1 GDI objects

process GDI context

EMF #2 file EMF #3 file

security boundaries

Attack scenario: GDI context priv. escal.

renderer.exe GDI objects EMF #2 GDI objects EMF #3 GDI objects

EMF #1 file

EMF #1 GDI objects

process GDI context

security boundaries

Types of Metafile bugs

1. Memory corruption bugs

• Buffer overflows etc. due to mishandling specific records.

• Potentially exploitable in any type of renderer.

• Impact: typically RCE.

2. Memory disclosure bugs

• Rendering uninitialized or out-of-bounds heap memory as image pixels.

• Exploitable only in contexts where displayed images can be read back (web browsers, remote renderers).

• Impact: information disclosure (stealing secret information, defeating ASLR etc.).

3. Invalid interaction with the OS and GDI object mismanagement.

• Impact, exploitability = ???, depending on the specific nature of the bug.

Let’s get started!

• Earlier this year, I started manually auditing the available EMF implementations.

• This has resulted in 10 CVEs from Microsoft and 3 CVEs from VMware (covering

several dozen of actual bugs).

• Let’s look into the root causes and exploitation of the most interesting ones.

• Examples are shown based on Windows 7 32-bit, but most of the research applies to both

bitnesses and versions up to Windows 10.

Auditing GDI

Getting started

• To get some general idea of where the functionality in question is

implemented and what types of bugs were found in the past, it makes

sense to check prior art.

• A „wmf vulnerability” query yields just one result:

the SetAbortProc bug!

SetAbortProc WMF bug (CVE-2005-4560)

• Discovered on December 27, 2005. Fixed on January 5, 2006.

• Critical bug, allowed 100% reliable RCE while using GDI to display the

exploit (e.g. in Internet Explorer).

• Called „Windows Metafile vulnerability”, won Pwnie Award 2007.

• No memory corruption involved, only documented features of WMF.

• So what was the bug?

The GDI API...

function pointer

... and the WMF counterpart

In essence...

... the format itself supported calling:

SetAbortProc(hdc, (ABORTPROC)"controlled data");

and having the function pointer called afterwards.

Code execution by design.

Lessons learned

1. The format may (un)officially proxy calls to interesting / dangerous

API calls, so the semantics of each function and its parameters

should be checked for unsafe behavior.

2. The handling of WMF takes place in a giant switch/case in

gdi32!PlayMetaFileRecord.

What about EMF bugs?

• Searching for „emf vulnerability” yields more diverse results.

• Most recent one: „Yet Another Windows GDI Story” by Hossein Lotfi

(@hosselot).

• Fixed in April 2015 as part of MS15-035, assigned CVE-2015-1645.

• A heap-based buffer overflow due to an unchecked assumption about an

input „size” field in one of the records (SETDIBITSTODEVICE).

• In large part an inspiration to start looking into EMF security myself.

Lessons learned

• Main function for playing EMF records is

gdi32!PlayEnhMetaFileRecord.

• Each record type has its own class with two methods:

• ::bCheckRecord() – checks the internal integrity and correctness of the

record.

• ::bPlay() – performs the actions indicated in the record.

GDI32 ::bCheckRecord array

GDI32 ::bPlay array

That’s a starting point.

Impact: File Existence Information Disclosure

Record:
EMR_CREATECOLORSPACE,

EMR_CREATECOLORSPACEW

Exploitable in: Internet Explorer

CVE: CVE-2016-0168

google-security-research entry: 722

Fixed: MS16-055, 10 May 2016

CVE-2016-0168

Minor bug #1 in EMR_CREATECOLORSPACEW

• The quality of the code can be immediately recognized by observing many small, but

obvious bugs.

• MRCREATECOLORSPACEW::bCheckRecord() checks that the size of the record is ≥ 0x50

bytes long:

.text:7DB01AEF mov eax, [esi+4]

.text:7DB01AF2 cmp eax, 50h

.text:7DB01AF5 jb short loc_7DB01B1E

• Then immediately proceeds to read a .cbData field at offset 0x25C:

.text:7DB01AF7 mov ecx, [esi+25Ch]

• Result: out-of-bounds read by 0x20C bytes.

Minor bug #2 in EMR_CREATECOLORSPACEW

• Then, the .cbData from invalid offset 0x25C is used to verify the record

length:
.text:7DB01AF7 mov ecx, [esi+25Ch]

.text:7DB01AFD add ecx, 263h

.text:7DB01B03 and ecx, 0FFFFFFFCh

.text:7DB01B06 cmp eax, ecx

.text:7DB01B08 ja short loc_7DB01B1E

• The above translates to:
if (... && record.length <= ((record->cbData + 0x263) & ~3) && ...) {

// Record valid.

}

Minor bug #2 in EMR_CREATECOLORSPACEW

• Two issues here:

1. Obvious integer overflow making a large .cbData pass the check.

2. Why would the record length be smaller then the data declared within? It

should be larger!

• It all doesn’t matter anyway, since the data is not used in any further
processing.

Minor bug #3 in EMR_CREATECOLORSPACEW

• The .lcsFilename buffer of the user-defined LOGCOLORSPACEW

structure is not verified to be nul-terminated.

• May lead to out-of-bound reads while accessing the string.

• As clearly visible, there are lots of unchecked assumptions in the

implementation, even though only minor so far.

• Keeps our hopes up for something more severe.

The file existence disclosure

• Back to the functionality of EMR_CREATECOLORSPACE[W] records: all they

do is call CreateColorSpace[W] with a fully controlled LOGCOLORSPACE

structure:
typedef struct tagLOGCOLORSPACE {

DWORD lcsSignature;
DWORD lcsVersion;
DWORD lcsSize;
LCSCSTYPE lcsCSType;
LCSGAMUTMATCH lcsIntent;
CIEXYZTRIPLE lcsEndpoints;
DWORD lcsGammaRed;
DWORD lcsGammaGreen;
DWORD lcsGammaBlue;
TCHAR lcsFilename[MAX_PATH];

} LOGCOLORSPACE, *LPLOGCOLORSPACE;

Inside CreateColorSpaceW

• The function builds a color profile file path using internal

gdi32!BuildIcmProfilePath.

• if the provided filename is relative, it is appended to a system directory path.

• otherwise, absolute paths are left as-is.

• All paths are accepted, except for those starting with two "/" or "\" characters:

if ((pszSrc[0] == '\\' || pszSrc[0] == '/') &&
(pszSrc[1] == '\\' || pszSrc[1] == '/')) {

// Path denied.
}

Inside CreateColorSpaceW

• This is supposedly to prevent specifying remote UNC paths starting

with the "\\" prefix, e.g. \\192.168.1.13\C\Users\test\profile.icc.

• However, James Forshaw noted that this check is not effective, as the

prefix can be also represented as "\??\UNC\".

• The check is easily bypassable with:

\??\UNC\192.168.1.13\C\Users\test\profile.icc

CreateColorSpaceInternalW: last step

• After the path is formed, but before invoking the NtGdiCreateColorSpace

system call, the function opens the file and immediately closes it to see if it exists:

HANDLE hFile = CreateFileW(&FileName, GENERIC_READ, FILE_SHARE_READ, 0,

OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0);

if (hFile == INVALID_HANDLE_VALUE) {

GdiSetLastError(2016);

return 0;

}

CloseHandle(hFile);

Consequences

• In result, we can have CreateFileW() called over any chosen path.

• If it succeeds, the color space object is created and the function returns

success.

• If it fails, the GDI object is not created and the handler returns failure.

• Sounds like information disclosure potential.

• How do we approach exploitation e.g. in Internet Explorer?

Intuitive way: leaking the return value

• Since the return value of CreateFileW() determines the success of

the record processing, we could maybe leak this bit?

• Initial idea: use EMR_CREATECOLORSPACE as the first record, followed by a

drawing operation.

• If the drawing is never executed (which can be determined with the <canvas>

tag), the call failed.

Intuitive way: leaking the return value

• Unfortunately impossible.

• The gdi32!_bInternalPlayEMF function (called by PlayEnhMetaFile

itself) doesn’t abort image processing when one record fails.

• A „success” flag is set to FALSE, and the function proceeds to further operations.

• All records are always executed, and the return value is a flag indicating if

at least one of the records failed during the process.

Can’t we leak the final return value?

• No, not really.

• The return value of PlayEnhMetaFile is discarded by Internet

Explorer in mshtml!CImgTaskEmf::Decode:

.text:64162B49 call ds:__imp__PlayEnhMetaFile@12

.text:64162B4F or dword ptr [ebx+7Ch], 0FFFFFFFFh

.text:64162B53 lea eax, [esp+4C8h+var_49C]

Other disclosure options

• The other indicator could be the creation of a color space object via

NtGdiCreateColorSpace.

• Leaking it directly is not easy (if at all possible), but maybe there is

some side channel?

Using the GDI object limit

• Every process in Windows is limited to max. 10,000 GDI objects by default.

• The number can be adjusted in the registry, but isn’t for IE.

• If we use 10,000 EMR_CREATECOLORSPACEW records with the file path we want to

check, then:

• If the file exists, we’ll have 10,000 color space objects, reaching the per-process limit.

• If it doesn’t, we won’t have any color spaces at all.

• We’re now either at the limit, or not. If we then create a brush (one more object) and try

to paint, then:

• If the file exists, the brush creation will fail and the default brush will be used.

• If it doesn’t, the brush will be created and used for paiting.

GDI object limit as oracle illustrated

Bitmap

Font

Palette

Color space

Color space
Color space

Color space

...

Color space

Color space

Color space

Color space

Color space
Color space
Color space

Limit

Brush

Brush

Bitmap

Font

Palette

Brush

Brush

File exists: File doesn’t exist:

DEMO

Vulnerability impact

• Arbitrary file existence disclosure, useful for many purposes:

• Recognizing specific software (and versions) that the user has installed, for

targetted attacks.

• Tracking users (by creating profiles based on existing files).

• Tracking the opening times of offline documents (e.g. each opening in

Microsoft Office could trigger a ping to remote server via SMB).

• Blindly scanning network shares available to the user.

Impact: Memory disclosure

Record: Multiple records (10)

Exploitable in: Internet Explorer

CVE: CVE-2016-3216

google-security-research entry: 757

Fixed: MS16-074, 14 June 2016

CVE-2016-3216

Device Independent Bitmaps (DIBs)

In Windows GDI, raster bitmaps are

usually stored in memory in the form of

DIBs:

• Short header containing basic metadata

about the image, followed by optional

palette.

• The image data itself.

BITMAPINFO

BITMAPINFOHEADER

RGBQUAD
bmiColors[...];

Bitmap data

11142211142211142
21114221114221114
22111422111422111
42211142211142211
14221114221114221
11422111422101321
10132110132110132
11013211013211013
211013210F12200F1
2200F12200F12200F
12200F12200F12200

.BMP files are just DIBs, too.

BITMAPINFO

BITMAPINFOHEADER

RGBQUAD
bmiColors[...];

Bitmap data

11142211142211142
21114221114221114
22111422111422111
42211142211142211
14221114221114221
11422111422101321
10132110132110132
11013211013211013
211013210F12200F1
2200F12200F12200F
12200F12200F12200

BITMAPFILEHEADER

typedef struct tagBITMAPFILEHEADER {
WORD bfType;
DWORD bfSize;
WORD bfReserved1;
WORD bfReserved2;
DWORD bfOffBits;

} BITMAPFILEHEADER;

bfOffBits

BITMAPINFOHEADER, the trivial header

typedef struct tagBITMAPINFOHEADER {

DWORD biSize;

LONG biWidth;

LONG biHeight;

WORD biPlanes;

WORD biBitCount;

DWORD biCompression;

DWORD biSizeImage;

LONG biXPelsPerMeter;

LONG biYPelsPerMeter;

DWORD biClrUsed;

DWORD biClrImportant;

} BITMAPINFOHEADER;

• Short and simple structure.

• 40 bytes in length (in typical

form).

• Only 8 meaningful fields.

Is it really so trivial to handle?

• biSize needs to be sanitized (can only be a few valid values).

• biWidth, biHeight, biPlanes, biBitCount can cause integer overflows (often

multiplied with each other).

• biHeight can be negative to indicate bottom-up bitmap.

• biPlanes must be 1.

• biBitCount must be one of {1, 2, 4, 8, 16, 24, 32}.

• For biBitCount < 16, a color palette can be used.

• The size of the color palette is also influenced by biClrUsed.

Is it really so trivial to handle?

• biCompression can be BI_RGB, BI_RLE8, BI_RLE4, BI_BITFIELDS, ...

• Each compression scheme must be handled correctly.

• biSizeImage must correspond to the actual image size.

• The palette must be sufficiently large to contain all entries.

• The pixel data buffer must be sufficiently large to describe all pixels.

• Encoded pixels must correspond to the values in header (e.g. not exceed

the palette size etc.).

Many potential problems

1. The decision tree for correctly handling a DIB based on its header is

very complex.

2. Lots of corner cases to cover and implementation bugs to avoid.

3. A consistent handling across various parts of code is required.

GDI functions operating on DIB (directly)

pointer to image data

pointer to DIB header

GDI functions operating on DIB (indirectly)

Data sanitization responsibility

• In all cases, it is the API caller’s resposibility to make sure the headers

and data are correct and adequate.

• Passing in fully user-controlled input data is somewhat problematic,

as the application code would have to „clone” GDI’s DIB handling.

• Guess what? EMF supports multiple records which contain embedded

DIBs.

EMF records containing DIBs

• EMR_ALPHABLEND
• EMR_BITBLT
• EMR_MASKBLT
• EMR_PLGBLT
• EMR_STRETCHBLT
• EMR_TRANSPARENTBLT
• EMR_SETDIBITSTODEVICE
• EMR_STRETCHDIBITS
• EMR_CREATEMONOBRUSH
• EMR_EXTCREATEPEN

The common scheme

• Two pairs of (offset, size) for both the header and the bitmap:

Necessary checks in the EMF record handlers

• In each handler dealing with DIBs, there are four necessary

consistency checks:

1. cbBmiSrc is adequately large for the header to fit in.

2. (offBmiSrc, offBmiSrc + cbBmiSrc) resides fully within the record.

3. cbBitsSrc is adequately large for the bitmap data to fit in.

4. (offBitsSrc, offBitsSrc + cbBitsSrc) resides fully within the record.

Checks were missing in many combinations

Record handlers Missing checks

MRALPHABLEND::bPlay
MRBITBLT::bPlay
MRMASKBLT::bPlay
MRPLGBLT::bPlay
MRSTRETCHBLT::bPlay
MRTRANSPARENTBLT::bPlay

#1, #2

MRSETDIBITSTODEVICE::bPlay #3

MRSTRETCHDIBITS::bPlay #1, #3

MRSTRETCHDIBITS::bPlay
MRCREATEMONOBRUSH::bPlay
MREXTCREATEPEN::bPlay

#1, #2, #3, #4

* This was just after a cursory look; Microsoft might have fixed more.

The consequence

• Due to missing checks, parts of the image description could be loaded from

other parts of the process address space (e.g. adjacent heap allocations):

• DIB header

• Color palette

• Pixel data

• Uninitialized or out-of-bound heap memory could be disclosed with the

palette or pixel data.

Proof of concept

• I hacked up a PoC file with an EMR_STRETCHBLT record, containing an 8-bpp DIB with palette

entries going beyond the file.

• Result: garbage bytes being displayed as image pixels.

• The same picture being displayed three times in a row in IE:

• The data can be read back using HTML5, in order to leak module addresses and other sensitive

data.

DEMO

Auditing ATMFD.DLL
Out of time, please see the full slide deck released after the conference.

Auditing GDI+

GDI+ as a viable target

• GDI+ supports both EMF and EMF+.

• Most of the implementation is independent, but for some parts of the format,

it falls back to GDI code.

• Hence, some GDI bugs could also affect GDI+ clients.

• Most prominent client of GDI+ is the Microsoft Office suite.

• Once again, let’s manually audit the entirety of EMF record handlers.

Attack surface easy to find

Attack surface easy to find

Let’s have a look at some specific bugs.

Impact: Write-what-where

Record: All records operating on DIBs

Exploitable in: Microsoft Office

CVE: CVE-2016-3301

google-security-research entry: 824

Fixed: MS16-097, 9 August 2016

CVE-2016-3301

RLE-compressed bitmaps in EMFs

• As previously mentioned, multiple EMF records include DIBs.

• DIBs can be compressed with simple schemes, such as 4- and 8-bit Run

Length Encoding.

• Denoted by the biCompression field in the headers.

• When reading through the code of some handlers, I discovered that 8-bit

RLE is supported in GDI+.

• RLE decompression has historically been a very frequent source of bugs.

Reaching the code

DecodeCompressedRLEBitmap

CopyOnWriteBitmap::CopyOnWriteBitmap

CopyOnWriteBitmap::Create

GpBitmap::GpBitmap

CEmfPlusEnumState::PlgBlt CEmfPlusEnumState::RenderBlt

Inside DecodeCompressedRLEBitmap()

• Two values are calculated:

columns = abs(biHeight)

bytes_per_row = abs(biWidth * (((biPlanes * biBitCount + 31) & 0xFFFFFFE0) / 8))

• The output buffer is allocated from the heap with size

columns * bytes_per_row.

• High degree of control over the buffer length.

• Interpretation and execution of the RLE „program” begins.

„End of Line” opcode

• Moves the output pointer to the next line (at the same offset).

„End of Line” opcode

• In GDI+, implemented as follows:

out_ptr += bytes_per_row;

if (out_ptr > output_buffer_end) {

// Bail out.

}

• Bounds checking implemented to prevent any kind of out-of-bounds access.

• Happens to work correctly on 64-bit platforms, but is the condition really

sufficient?

Insufficient validation

End of process address space
0xffffffff

Output buffer

Tricky pointer arithmetic

• For very wide bitmaps, the distance from the current output pointer to the

end of the address space can be smaller than the scanline width.

• The expression:

out_ptr += bytes_per_row;

can overflow, which will cause the subsequent check to have no effect.

• As a result, it is possible to set the output pointer to a largely controlled

address.

Example

• biWidth = 0x05900000

• biHeight = 0x00000017

• biPlanes = 0x0001

• biBitCount = 0x0008

• As a result, columns = 0x17 and bytes_per_row = 0x590000.

• Total buffer size = 0x7FF00000 (almost 2 GB).

• Example allocation address: 0x7FFFF0020, end: 0xFFEF0020.

Memory address space layout

0x00000000 0xFFFFFFFF

0x7FFF0020

Memory address space layout (EOL #1)

0x00000000 0xFFFFFFFF

0x858F0020

Memory address space layout (EOL #2)

0x00000000 0xFFFFFFFF

0x8B1F0020

Memory address space layout (EOL #3-22)

0x00000000 0xFFFFFFFF

…

Memory address space layout (EOL #23)

0x00000000 0xFFFFFFFF

0xFFEF0020

Memory address space layout (EOL #24)

0x00000000 0xFFFFFFFF

0x057F0020

(3434.194): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0011015e ebx=ffef0020 ecx=000000fe edx=057f01cc esi=057f0020 edi=0011a6f0

eip=6b090e5a esp=0037f290 ebp=0037f2ac iopl=0 nv up ei pl nz na pe cy

cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00010207

gdiplus!DecodeCompressedRLEBitmap+0x195:

6b090e5a 8816 mov byte ptr [esi],dl ds:002b:057f0020=??

0:000> kb

ChildEBP RetAddr Args to Child

0037f2ac 6b091124 057f0020 cc11012c 0037f2cc gdiplus!DecodeCompressedRLEBitmap+0x195

0037f6f4 6b092c7a 001100f8 0011012c 00000000 gdiplus!CopyOnWriteBitmap::CopyOnWriteBitmap+0x96

0037f708 6b0932cc 001100f8 0011012c 00000000 gdiplus!CopyOnWriteBitmap::Create+0x23

0037f720 6b0c1e8b 001100f8 0011012c 00000000 gdiplus!GpBitmap::GpBitmap+0x32

0037f804 6b0c7ed1 0000004f 00143a30 0000a67c gdiplus!CEmfPlusEnumState::PlgBlt+0x92

…

Summary

• Requirement: 32-bit process with PAE enabled.

• Full 4 GB address space must be available to the program.

• Outcome: a write-what-where condition, with a very high degree of control over

the „where”.

• Besides achieving a specific value, the overwritten region must also be below the original

output buffer.

• Exploitation reliability highly depends on the state of the address space at the

time of loading the image.

Impact: Heap-based buffer overflow

Record: EMR_EXTTEXTOUTA, EMR_POLYTEXTOUTA

Exploitable in: Microsoft Office

CVE: CVE-2016-3304

google-security-research entry: 828

Fixed: MS16-097, 9 August 2016

CVE-2016-3304

ExtTextOutA() and PolyTextOutA()

The Dx array in EMF records

Trivial bug in the function

• The Dx array is supposed to have N elements, where N is the number

of characters being displayed.

• Below is the record size validation check:

if (record_size - offString >= nChars &&

(!nChars || record_size - 4 >= record->emrtext.offDx)) {

// Validation passed, continue processing the record.

}

• See anything missing?

Trivial bug in the function

• The code checks that the Dx array may hold 4 bytes.

• What should really be verified is if it can hold 4 × N bytes.

• Typical human error in the sanity check.

• So what? This should only lead to an out-of-bounds read, since it’s a

problem with input buffer validation, right?

• Yes, if not for the extra logic later in the code.

Extended function logic

• Attempt to convert the string to wide-char, using

MultiByteToWideChar().

• The code page is the one specified in the most recently selected font.

• If all characters are converted,

CEmfPlusEnumState::PlayExtTextOut() is called as normal.

• But otherwise…

DBCS (Double-byte character sets) handling

• Basically means representing characters by means of more than 1

byte in certain encodings which support it.

• The handling is implemented as follows:

• An exact copy of the EMF record is allocated (of the same size).

• Dx array items are rewritten from the original record to the new one,

ommitting entries for „lead bytes” (IsDBCSLeadByteEx() returns TRUE).

• The new record is processed normally from now on.

Reaching the code path

• A font with a code page supporting DBCS must be selected first.

• Typically CJK (Chinese, Japanese, Korean) code pages, e.g. SHIFTJIS_CHARSET.

• Then, one of the affected records must be used, including at least one „lead byte”.

• The outcome is a typical heap-based buffer overflow, with data read from

beyond the bounds of another allocation.

• With some heap massaging, this should allow for a mostly controlled overwrite.

Heap overflow scheme

Original recordNew record

Heap region

Heap overflow scheme

Original recordNew record

Heap region

Dx array rewriting

(2a8c.2bd8): Break instruction exception - code 80000003 (first chance)
eax=00000000 ebx=00000000 ecx=772336ab edx=0022cb85 esi=03bd0000 edi=1171ffc0
eip=7728e815 esp=0022cdd8 ebp=0022ce50 iopl=0 nv up ei pl nz na pe nc
cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00200206
ntdll!RtlReportCriticalFailure+0x29:
7728e815 cc int 3
0:000> kb
ChildEBP RetAddr Args to Child
0022ce50 7728f749 c0000374 772c4270 0022ce94 ntdll!RtlReportCriticalFailure+0x29
0022ce60 7728f829 00000002 64dc1326 03bd0000 ntdll!RtlpReportHeapFailure+0x21
0022ce94 7724ab46 0000000c 03bd0000 1171ffc0 ntdll!RtlpLogHeapFailure+0xa1
0022cf84 771f3431 00000258 00000260 03bd00c4 ntdll!RtlpAllocateHeap+0x7b2
0022d008 695071ec 03bd0000 00000000 00000258 ntdll!RtlAllocateHeap+0x23a
0022d01c 6951bbf1 00000258 116b5104 03bdd558 gdiplus!GpMalloc+0x16
0022d030 69557185 116b50e0 116b50e0 03bdd558 gdiplus!GpGraphics::Save+0x11
0022d4b0 69557bdc 116b50e0 116b5104 116b30d8 gdiplus!CEmfPlusEnumState::PlayExtTextOut+0xda
0022d4ec 69557f25 00000053 03bdae00 00006044 gdiplus!CEmfPlusEnumState::ExtTextOutA+0x136
0022d500 695286ca 00000053 00006044 0d67b568 gdiplus!CEmfPlusEnumState::ProcessRecord+0x13b
0022d51c 69528862 00000053 00000000 00006044 gdiplus!GdipPlayMetafileRecordCallback+0x6c
0022d544 768155f4 9d211b17 0d567180 0d67b568 gdiplus!EnumEmfDownLevel+0x6e
0022d5d0 6952aa36 9d211b17 403581b3 695287f4 GDI32!bInternalPlayEMF+0x6a3

Impact: Heap memory disclosure

Record: All records handling DIBs

Exploitable in: Microsoft Office Online

CVE: CVE-2016-3262, CVE-2016-3263

google-security-research entry: 825, 829

Fixed: MS16-120, 11 October 2016

GDI+ information disclosure bugs

GDI+ versus DIB

• Not unlike GDI, GDI+ didn’t avoid information disclosure bugs related to

the handling of bitmaps.

• Specifically:

1. If the data stream of a RLE-compressed bitmap begins with an „End of bitmap”

marker, the entirety of the image’s output buffer remains uninitialized (contains

junk heap data).

2. No checks are performed to ensure that the bitmap palette fits entirely within the

EMF record.

Bugs clearly visible

• When loading proof-of-concept pictures into Word, it’s clearly visible

that junk data is displayed as pixels.

Remote exploitability?

• Displaying heap memory is not a serious condition if the pixels cannot be

retrieved back somehow.

• The only obvious targets for the bugs are Office programs, where no interaction is

available.

• Still reported to Microsoft to get their view on severity and possible exploitation

paths.

• MSRC closed out the issues as „vNext” (won’t be patched in a bulletin, candidate

for a next-version fix).

Severity assessment

• I agreed with the decision, as it was in line with my own understanding of the

exposure.

• P0 bugs #825 and #829 were derestricted on July 26 and August 9, respectively.

• At the beginning of August, Ivan Fratric mentioned during a chat that GDI+/EMF

bugs may also be exploitable remotely, in Office Online.

• I had no idea the program even existed.

• Especially interesting for GDI+ memory disclosure bugs, which are not otherwise exploitable.

• EMF images cannot be inserted into documents, but existing .docx with embedded EMF can.

Office Online

• I verified this a few weeks later, and…

Office Online

• The EMF images were rendered differently each time.

• Apparent remote memory disclosure from the renderer process on

Microsoft’s servers.

• Sent the new information to MSRC for reconsideration.

• They admitted the Office Online scenario had not been considered before,

and it makes the bugs fix-worthy.

• They should have been fixed, as per the October Patch Tuesday.

Hacking VMware Workstation

EMF in print spooling

• EMF files are also used heavily in print spooling.

• This opens up more format-related attacks vectors, in the form of

printer drivers (and other related software).

• One such feasible target is VMware Workstation.

Virtual printers

• A feature which allows a virtual machine to print documents to printers available on the

host (basically printer sharing).

• A feasible VM escape attack vector.

• To my best knowledge, it was enabled by default in 2015, but it’s no longer the case

(likely thanks to bugs reported by Kostya Kortchinsky).

• Still a frequently used option.

Architecture

VM #3 VM #2 VM #3

poc.exe

Virtual Machines

vmware.exe

COM1

vprintproxy.exe

Windows Named Pipes

Architecture

• The attacked process is vprintproxy.exe running on the host.

• Receives almost verbatim data sent by an unprivileged process in a guest

system.

• Quite a communication channel.

• The data is sent in the form of EMFSPOOL files.

• Similar to EMF, with the extra option to embed fonts in various formats.

TPView

• More specifically, the most interesting EMF handling takes place in TPview.dll.

• Together with some other printer-related libraries, they all seem to be developed by a third

party, ThinPrint.

• Mostly just falls back to GDI, but also performs specialized handling of several

record types.

• Used to be full of simple bugs, but Kostya found (nearly) all of them!

• Took another look, discovered a double-free and out-of-bounds memset(), but that’s all

(issues #848 and #849).

JPEG2000 decoding

• There was one last custom EMF record which seemed completely

unexplored.

• ID = 0x8000.

• Based on debug strings, it was clear that it was related to JPEG2000 decoding.

• I am no expert at JPEG2K, and the code doesn’t seem to be

convenient for manual auditing.

• Let’s fuzz it?

Approaching the fuzzing

• Best fuzzing: on Linux, at scale, with AddressSanitizer and coverage

feedback.

• After some research, it turns out that the JPEG2000 decoder is authored by

yet another vendor, LuraTech.

• Commercial license, source code not freely available.

• So, are we stuck with TPview.dll wrapped by VMware Workstation?

• Still feasible, but more complex, slower, and less advanced.

More research

• After some more digging, I found out that the same vendor released a

freeware JPEG2000 decoding plugin for the popular IrfanView program.

• JPEG2000.DLL.

• Cursory analysis shows that this is the same or a very similar code base.

• The plugin interface is an extremely simple to use, and resembles the

following definition.

HGLOBAL ReadJPG2000(IN PCHAR lpFilename,

IN DWORD dwUnknown,

OUT PCHAR lpStatus,

OUT PCHAR lpFormat,

OUT LPDWORD lpWidth,

OUT LPDWORD lpHeight);

Getting there...

• Thanks to this, we can already quickly fuzz-test the implementation in

a single process on Windows, without running VMware at all.

• A wrapper program for loading the DLL and calling the relevant function is

<50 LOC long.

• However, I’d really prefer to have this on Linux...

Fuzzing DLL on Linux

• Why not, really?

• The preferred base address is 0x10000000, which is available in the address space.

• Relocations not required; sections must be mapped with respective access rights.

• Other actions:

• Resolve necessary imports.

• Obtain the address of the exported function.

• Call it to execute the decoding.

• Should work!

Resolving imports

• The Import Table may be the only troublesome part.

• WinAPI functions not available on Linux.

• The DLL imports from ADVAPI32, KERNEL32, MSVCRT, SHELL32 and

USER32.

• C Runtime imports can be directly redirected to libc.

• All the other ones would have to be rewritten or at least stubbed-out.

KERNEL32 imports

• Three WinAPI functions used in decoding: GlobalAlloc, GlobalLock and GlobalUnlock:

void *GlobalAlloc(uint32_t uFlags, uint32_t dwBytes) __attribute__((stdcall));
void *GlobalAlloc(uint32_t uFlags, uint32_t dwBytes) {
void *ret = malloc(dwBytes);
if (ret != NULL) {

memset(ret, 0, dwBytes);
}
return ret;

}

void *GlobalLock(void *hMem) __attribute__((stdcall));
void *GlobalLock(void *hMem) {
return hMem;

}

bool GlobalUnlock(void *hMem) __attribute__((stdcall));
bool GlobalUnlock(void *hMem) {
return true;

}

Missing libc imports

• Two MSVCRT-specific imports were found, which had to be

reimplemented:

long long _ftol(double val) __attribute__((cdecl));

long long _ftol(double val) {

return (long long)val;

}

double _CIpow(double x, double y) __attribute__((cdecl));

double _CIpow(double x, double y) {

return pow(x, y);

}

It works!

$./loader JPEG2000.dll test.jp2

[+] Successfully loaded image (9b74ba8), format:
JPEG2000 - Wavelet, width: 4, height: 4

Running the fuzzing

• An internally available JPEG2000 input file corpus was used.

• The mutation strategy was adjusted to hit the 50/50 success/failure

rate.

• Left the dumb fuzzer running for a few days, and...

• ... 186 crashes with unique stack traces were found.

Crash reproduction

• Keep in mind the crashes are still in the plugin DLL, not VMware

Workstation.

• vprintproxy.exe is very convenient to use: creates a named pipe and

reads exactly the same data that is written to COM1.

• Once again we can check testcases without starting up any actual VMs.

• PageHeap enabled for better bug detection and deduplication.

Final results

Instruction Reason

add [eax+edx*4], edi Heap buffer overflow

cmp [eax+0x440], ebx Heap out-of-bounds read

cmp [eax+0x8], esi Heap out-of-bounds read

cmp [edi+0x70], ebx Heap out-of-bounds read

cmp [edi], edx Heap out-of-bounds read

cmp dword [eax+ebx*4], 0x0 Heap out-of-bounds read

cmp dword [esi+eax*4], 0x0 Heap out-of-bounds read

div dword [ebp-0x24] Division by zero

div dword [ebp-0x28] Division by zero

fld dword [edi] NULL pointer dereference

idiv ebx Division by zero

idiv edi Division by zero

imul ebx, [edx+eax+0x468] Heap out-of-bounds read

mov [eax-0x4], edx Heap buffer overflow

mov [ebx+edx*8], eax Heap buffer overflow

mov [ecx+edx], eax Heap buffer overflow

mov al, [esi] Heap out-of-bounds read

mov bx, [eax] NULL pointer dereference

mov eax, [ecx] NULL pointer dereference

mov eax, [edi+ecx+0x7c] Heap out-of-bounds read

Instruction Reason

mov eax, [edx+0x7c] Heap out-of-bounds read

movdqa [edi], xmm0 Heap buffer overflow

movq mm0, [eax] NULL pointer dereference

movq mm1, [ebx] NULL pointer dereference

movq mm2, [edx] NULL pointer dereference

movzx eax, byte [ecx-0x1] Heap out-of-bounds read

movzx eax, byte [edx-0x1] Heap out-of-bounds read

movzx ebx, byte [eax+ecx] Heap out-of-bounds read

movzx ecx, byte [esi+0x1] Heap out-of-bounds read

movzx ecx, byte [esi] Heap out-of-bounds read

movzx edi, word [ecx] NULL pointer dereference

movzx esi, word [edx] NULL pointer dereference

push dword [ebp-0x8] Stack overflow (deep / infinite recursion)

push ebp Stack overflow (deep / infinite recursion)

push ebx Stack overflow (deep / infinite recursion)

push ecx Stack overflow (deep / infinite recursion)

push edi Stack overflow (deep / infinite recursion)

push esi Stack overflow (deep / infinite recursion)

rep movsd Heap buffer overflow, Heap out-of-bounds read

Final results

• Crashes at 39 unique instructions.

• Many occurring at various points of generic functions such as memcpy(), so

not the most accurate metric.

• Quick classification: 18 low severity, 15 medium severity, 6 high severity.

• All reported to VMware on June 15.

• Fixed as part of VMSA-2016-0014 on September 13 (within 90 days).

Closing thoughts

Closing thoughts

• Metafiles are complex and interesting files, certainly worth researching further.

• Supported by a variety of valid attack vectors.

• They can even teach you things about the system API (i.e. the NamedEscape interface).

• As usual, the older and more obscure the format/implementation – the better for the

bughunter.

• Inspiration with prior work pays off again.

• The right tool for the right job – manual code auditing vs fuzzing.

Thanks!

@j00ru

http://j00ru.vexillium.org/

j00ru.vx@gmail.com

http://twitter.com/j00ru
http://j00ru.vexillium.org/
mailto:j00ru.vx@gmail.com

