Windows Metafiles

An Analysis of the EMF Attack Surface & Recent Vulnerabilities

Mateusz “jOOru” Jurczyk
Ruxcon, Melbourne 2016

PS> whoami

* Project Zero @ Google

* Low-level security researcher with interest in all sorts of vulnerability

research and software exploitation

* http://i0O0ru.vexillium.org/

e @{00ru

http://j00ru.vexillium.org/
http://twitter.com/j00ru

Agenda

* Windows Metafile primer, GDI design, attack vectors.

* Hacking:
* Internet Explorer (GDI)
* Windows Kernel (ATMFD.DLL)

* VMware virtualization (Print Spooling)

* Final thoughts.

Windows GDI & Metafile primer

Windows GDI

* GDI stands for Graphics Device Interface.

* Enables user-mode applications to use graphics and formatted text on video

displays and printers.
* Major part of the system API (nearly 300 documented functions).

* Present in the OS since the very beginning (Windows 1.0 released in 1985).

* One of the oldest subsystems, with most of its original code still running 31 years later.

e Concidentally (?) also one of the most buggy components.

How to draw

1. Grab a handle to a Device Context (HDC).

* |dentifies a persistent container of various graphical settings (pens, brushes,

palettes etc.).
e Can be used to draw to a screen (most typically), a printer, or a metafile.

* Most trivial example:

HDC hdc = GetDC(NULL);

(obtains a HDC for the entire screen)

How to draw

2. Use a drawing function.

Ellipse(hdc, 100, 100, 500, 300); RoundRect(hdc, 100, 100, 500, 500, 100, 100);

4 N

Windows GDI — simplified architecture

NT OS Kernel

|

ring-0

ring-3

\ 4

appl.exe

Display Drivers Printer Drivers Font Drivers

| | |

Kernel-mode GDI (win32k.sys)

| |

User-mode GDI (gdi32.dll)

| | |

GDI+ (gdiplus.dll)

- | |

app2.exe app3.exe app4.exe

User to kernel APl mappings

Most user-mode GDI functions have their direct counterparts in the

kernel:
GDI32.DLL win32k.sys
AbortDoc NtGdiAbortDoc
AbortPath NtGdiAbortPath
AddFontMemResourceEx NtGdiAddFontMemResourceEx
AddFontResourcel NtGdiAddFontResourcel

AlphaBlend NtGdiAlphaBlend

Windows Metafiles

Core idea:

Store images as lists of records directly describing GDI calls.

Windows Metafiles

* Pros:

* requires little computation work from the rasterizer itself, as it only has to call GDI functions

with the supplied parameters.
* provides an official way of serializing sets of GDI operations into reproducible images.

e can work as a vector format, raster, or both.

e Cons:

* only works on Windows, unless full implementation of the supported graphical GDI

operations is implemented externally.

First version: WMF

* The original metafiles (WMF = Windows MetaFiles).

e Introduced with Windows 3.0 in 1990.

* Not as ancient as GDI itself, but almost so.

* |nitially documented in Windows 3.1 SDK (1994, volume 4).

* A revised, more complete specification was released in 2006, and has been

maintained since then.

* A description of all records and structures can be found in the MS-WMF document.

WMF files — 60 supported APl functions

AnimatePaletteArc
BitBlt
Chord

CreateBrushIndirect
CreateDIBPatternBrush

CreateFontIndirect
CreatePalette
CreatePatternBrush
CreatePenIndirect
DeleteObject
Ellipse

Escape
ExcludeClipRect
ExtFloodFill
ExtTextOut

FillRgn

FloodFill

FrameRgn
IntersectClipRect
InvertRgn

LineToMoveToEx
OffsetClipRgn

OffsetViewportOrgEx

OffsetWindowOrgEx
PaintRgn

PatBlt

Pie

Polygon

Polyline
PolyPolygon
RealizePalette
Rectangle
ResizePalette
RestoreDC
RoundRect

SaveDC
ScaleViewportExtEx
ScaleWindowExtEx
SelectClipRgn
SelectObject

SelectPaletteSetBkColor
SetBkMode
SetDIBitsToDevice
SetMapMode
SetMapperFlags
SetPaletteEntries
SetPixel
SetPolyFillMode
SetROP2
SetStretchBltMode
SetTextAlign
SetTextCharacterExtra
SetTextColor
SetTextJustification
SetViewportOrgEx
SetWindowExtEx
SetWindowOrgEx
StretchBlt
StretchDIBits

TextOut

Some seemingly interesting ones

AnimatePaletteArc
BitBlt

Chord
CreateBrushIndirect
CreateDIBPatternBrush
CreateFontIndirect
CreatePalette
CreatePatternBrush
CreatePenIndirect
DeleteObject
Ellipse

Escape
ExcludeClipRect
ExtFloodFill
ExtTextOut

FillRgn

FloodFill

FrameRgn
IntersectClipRect
InvertRgn

LineToMoveToEx
OffsetClipRgn

OffsetViewportOrgEx

OffsetWindowOrgEx
PaintRgn

PatBlt

Pie

Polygon

Polyline
PolyPolygon
RealizePalette
Rectangle
ResizePalette
RestoreDC
RoundRect

SaveDC
ScaleViewportExtEx
ScaleWindowExtEx
SelectClipRgn
SelectObject

SelectPaletteSetBkColor

SetBkMode
SetDIBitsToDevice
SetMapMode
SetMapperFlags
SetPaletteEntries
SetPixel
SetPolyFillMode
SetROP2
SetStretchBltMode
SetTextAlign
SetTextCharacterExtra
SetTextColor
SetTextJustification
SetViewportOrgEx
SetWindowEXxtEx
SetWindowOrgEx
StretchBlt
StretchDIBits
TextOut

WMFE: there’s more!

* The format also supports a number of records which do not directly
correspond to GDI functions.

e Header with metadata.

Embedded EMF.

Records directly interacting with the printer driver / output device.

End-of-file marker.

WME: there’s more!

e Generally, the most interesting records can be found in two sections:

Name Section Description

Bitmap record types 231 Manage and cutput bitmaps.

Control record types 232 Define the start and end of 3 WMF metafile,

Drawing record types 233 Perform graphics drawing orders,

Object record types 234 Create and manage graphics objects.

State record types 235 Specify and manage the graphics configuration

Escape record types 236 Specify extensions to functionality that are not directly available thre

RO0O3:
RO004 :
ROOO5 :
RO0O6:
RO0O7:
RO0O8:
RO0O9:
R0O010:
ROO11:
R0O12:
ROO13:
R0014:
ROO15:
ROO16:

Windows Metafile — example

[017]
[011]
[009]
[010]
[009]
[049]
[048]
[052]
[039]
[037]
[037]
[019]
[086]
[038]

META_SETMAPMODE
META_SETVIEWPORTEXTEX
META_SETWINDOWEXTEX
META_SETWINDOWORGEX
META_SETWINDOWEXTEX
META_CREATEPALETTE
META_SELECTPALETTE
META_REALIZEPALETTE
META_CREATEBRUSHINDIRECT
META_SELECTOBJECT
META_SELECTOBJECT
META_SETPOLYFILLMODE
META_POLYGON16
META_CREATEPEN

(s=12) {iMode(8=MM_ANISOTROPIC)}

(s=16) {szlExtent(1920,1200)}

(s=16) {szlExtent(1920,1200)}

(s=16) {ptlOrigin(-3972,4230)}

(s=16) {szlExtent(7921,-8462)}

(s=960) {ihPal(1l) LOGPAL[ver:768, entries:236]}

(s=12) {ihPal(Table object: 1)}

(s=8)

(s=24) {ihBrush(2), style(©=BS SOLID, color:0x00FFFFFF)}

(s=12) {Table object: 2=0BJ _BRUSH.(BS SOLID)}

(s=12) {Stock object: 8=0BJ PEN.(PS_NULL)}

(s=12) {iMode(1=ALTERNATE)}

(s=320) {rclBounds(89,443,237,548), nbPoints:73, P1(-2993,398) - Pn(-2993,398)}
(s=28) {ihPen(3), style(@=PS_SOLID | COSMETIC), width(®), color(0x00000000)}

WME: still very obsolete

* Even though already quite complex, the format didn’t turn out to be

very well thought-out for modern usage.

* It’s still supported by GDI, and therefore some of its clients (e.g.

Microsoft Office, Paint, some default Windows apps).

* Has been basically forgotten in any real-world use-cases for the last

decade or more.

WME: discouraged from use

* Even Microsoft gives a lot of reasons not to use it anymore:

The following are the limitations of this format:

* A Windows-format metafile is application and device dependent. Changes in the application's
mapping modes or the device resolution affect the appearance of metafiles created in this
format.

* A Windows-format metafile does not contain a comprehensive header that describes the original
picture dimensions, the resolution of the device on which the picture was created, an optional
text description, or an optional palette.

* A Windows-format metafile does not support the new curve, path, and transformation functions.
See the list of supported functions in the table that follows.

e Some Windows-format metafile records cannot be scaled.

* The metafile device context associated with a Windows-format metafile cannot be queried (that
s, an application cannot retrieve device-resolution data, font metrics, and so on).

Next up: EMF (Enhanced MetaFiles)

e Already in 1993, Microsoft released an improved revision of the image

format, called EMF.

 Documented in the official MS-EMF specification.

e Surpasses WMF in a multitude of ways:
 uses 32-bit data/offset width, as opposed to just 16 bits.

* device independent.
e supports a number of new GDI calls, while maintaining backward compatibility with

old records.

RO121:
RO122:
RO123:
RO124:

765)}

RO125:
RO126:
RO127:
RO128:
RO129:
RO130:

765)}

RO131:
RO132:
RO133:

Enhanced Metafile — example

[039]
[037]
[040]
[090]

[019]
[039]
[037]
[040]
[058]
[091]

[040]
[040]
[014]

EMR_CREATEBRUSHINDIRECT
EMR_SELECTOBJECT
EMR_DELETEOBJECT
EMR_POLYPOLYLINE16

EMR_SETPOLYFILLMODE
EMR_CREATEBRUSHINDIRECT
EMR_SELECTOBJECT
EMR_DELETEOBJECT
EMR_SETMITERLIMIT
EMR_POLYPOLYGON16

EMR_DELETEOBJECT
EMR_DELETEOBJECT
EMR_EOF

(s=24)
(s=12)
(s=12)
(s=44)

(s=12)
(s=24)
(s=12)
(s=12)
(s=12)
(s=60)

(s=12)
(s=12)
(s=20)

{ihBrush(2), style(1=BS NULL)}

{Table object: 2=0BJ_BRUSH.(BS_NULL)}

{ihObject(1)}

{rclBounds (128, -256,130,-254), nPolys:1, nbPoints:2, P1(386,-765) - Pn(386, -

{iMode (1=ALTERNATE)}

{ihBrush(1), style(©0=BS SOLID, color:0x00A86508)}

{Table object: 1=0BJ BRUSH.(BS_SOLID)}

{ihObject(2)}

{Limit:0.000}

{rclBounds(127,-259,138,-251), nPolys:1, nbPoints:6, P1(384,-765) - Pn(384,-

{ihObject(1)}
{ihObject(3)}
{nPalEntries:0, offPalEntries:16, nSizelLast:20}

EMF: interesting records at first glance

2.3.3 (@le]palna]=T g ol 2Nl e B 1N o 1= 105
2.3.3.1 EMR_COMMENT RECOM. .ttt ittt e e e e e aaae e 106
2.3.3.2 EMR_COMMENT_EMFPLUS RECOI .. .uiiiiiiiie e ciiee e e ineeneaenneeannennnaenes 107
2.3.3.3 EMR_COMMENT_EMFSPOOL ReCOMd....iiuiiiiiii i e e s 107
2.3.3.4 EMR_COMMENT_PUBLIC ReCOrd TYPES .iiviiiriiiie e e eieeieenie e eaeaaee e 108

2.3.3.4.1 EMR_COMMENT_BEGINGROUP ReCOrd ..ccueeiiiiiiieieiie i eieaees 109
2.3.3.4.2 EMR_COMMENT_ENDGROUP ReCOordccovviiiiiiiiiiie i i e aaee s 110
2.3.3.4.3 EMR_COMMENT_MULTIFORMATS ReCOrd . .uiiiiiiieieiii i e 111
2.3.3.4.4 EMR_COMMENT_WINDOWS_METAFILE Record............ccovviiiiiiniinn.n.. 112

EMF: interesting records at first glance

2.3.6 ot Tar= 1o = R ae] gl N 1Y o == 159
2.3.6.1 EMR_DRAWESCAPE RECOIA ..uuiiiiiiiiiie e e e et s e e ieeiaa e ea e nnene e neens 161
2.3.6.2 EMR_EXTESCAPE RECOI .. ettt et et et e e e ana e 161
2.3.6.3 EMR_NAMEDESCAPE RECOIN ..ttt et et et et et eaeaaeainaainaanseansanneans 162

EMF: interesting records at first glance

2

.3.9
2.3
2.3

9.
9.

1
2

(@] 1= a1 € IR =T ale e N I8 0=
EMR_GLSBOUNDEDRECORD RECOId .. .viiiiiiieitiiie e e et ee e anee s
EMR_GLSRECORD RECOM .uiiitiiiit it et e e ieeesaeeeaesneenaeenaesaeesneanseanaeaneenns

EMF: current support

* Despite being only 3 years younger than WMF, EMF has remained in
current usage until today.

* Not as a mainstream image format, but still a valid attack vector.

* A variety of attack vectors:
* Win32 GDI clients — most notably Internet Explorer.
e GDI+ clients — most notably Microsoft Office.

* Printer drivers, including those used in virtualization technology.

Toolset — examination (EMFexplorer

B Untitled - [Dotted_Lines.emf] - EMFexplorer B |
Eile Edit Document Tools View Help
D & B = 1 — W Ewidh~|m 4+ | & - < B (@ |[eni| ?
|133;133 |s1 # 81 dpi |‘ID24H?ES Save... | Capy Al | Close |

RO030: [055] EMR_SETMITERLIMIT (5=12] fLimi:0.000} ~

RO071: [90] EMR_POLYPOLYLINE16 [s=44] frelBounds139.-163,699,-161], rPalys:1, rbPairts:2, P1[419,-486] - Pr{2005 -456}

RO032: [195] EMR_EXTCREATEPEN [s=52] {inPen(2], style(73984=P5_SOLID | GEOMETRIC [JOIN_MITER | ENDCAP_SOUARE), width(2), brush(0=B5_S0LID,
elpColor 0x00CBAD AT

R0033: [037] EMR_SELECTOBJECT [5=12) {T able object: 2=0BJ_EXTPEN.[PS_SOLID | GEOMETRIC [JOIN_MITER | ENDCAP_SQUARE]}

R0034: [040] EMR_DELETEOBJECT (5=12] fihObject(1]}

RO035: [055] EMR_SETMITERLIMIT (=12 {Lirnit:0.000}

RO03E: [090] EMR_POLYPOLYLINE16 (s=458) {rclBounds(139,-877 699,-161), nPolys: 38, nbPoirts: 76, P1(2,0) - Pr(419,-492]}

R0037: [019] EMR_SETPOLYFILLMODE (5=12] fiMode(2=WINDING]}

RO038: [039] EWR_CREATEBRUSHINDIRECT [5=24] {inBrush(1], style{0=E5_S0LID, color. 0x00426503]}

R0033: [037] EMR_SELECTOBJECT (5=12] {T able ohject: 1=0BJ_ERUSH.[BS_S0LID]

R0040: [040] EMR_DELETEOBJECT [s=12] {inObject3)}

RO041: [195] EMR_EXTCREATEPEN (s=52] {inPen(3], style{74240=P5_SOLID | GEOMETRIC [JOIN_MITER | ENDCAP_FLAT), width(3], brush(0=B5_50LID, L
elpColor 0x00CBAD AT 3

R0042: [037] EMR_SELECTOBJECT [s=12) {T able object: 3=0BJ_EXTPEMN.IPS_SOLID | GEOMETRIC |JOIN_MITER | ENDCAR_FLAT)}

R0043: [040] EMR_DELETEOBJECT (5=12] fihDbject2]}

R0044: [055] EMR_SETMITERLIMIT (=12 {Lirnit:0.000}

RO045: [195] EMR_EXTCREATEPEN [5=52] {inPen(2], style{S=PS_MIULL), width(0), brush{0=B5_S0OLID, elpColor 01000000007}

RO046: [037] EMR_SELECTOBJECT [s=12] {Table object: 2=0B._PEM.[P5_MULL)}

R0047: [040] EMR_DELETEOBJECT (s=12] fihObject3]}

RO048: [039] EWR_CREATEBRUSHINDIRECT [s=24] {ihBrush(3). style{0=B5_S0LID, color:0x00486508]}

R0043: [037] EWR_SELECTOBJECT (s=12] iT able ohject: 3=0BJ_ERUSH.[BS_S0LIDT

RO050: [040] EMR_DELETEOBJECT [s=12] {inObject1]}

RO051: [091] EMR_POLYPOLYGOMN16 [s=44] frclBoundsl1 27.-722,130,-720), nPalys: 1, nbPoints:2, P1(385,-2162] - Pn{386.-2162)}

R0052: [095] EMR_EXTCREATEPEN [5=52] fihPen(1], style(F4240=P5_S0LID | GEOMETRIC [JOIN_MITER | ENDCAP_FLAT], width(3), brush(0=B5_S0OLID,
elpColar: 0x00CBAD AT

R0053: [037] EMR_SELECTOBJECT [5=12] 1T able: object 1=0BJ_EXTPEN.[PS_SOLID | GEOMETRIC |JOIN_MITER | ENDCAP_FLAT]}

RO054: [040] EMR_DELETEOBJECT [5=12] {inObject2)}

RO055: [039] EWR_CREATEBRUSHIMNDIRECT [5=24] {inBrushi2), style(1=B5_MULLJ}

RO05E: [037] EMR_SELECTOBJECT [s=12] {Table object: 2=0B.J_BRUSH.(BS_NULLJ}

RO057: [040] EMR_DELETEOBJECT (s=12] fihDbject(3]}

RO05%: [90] EMR_POLYPOLYLINE16 [s=44] frclBoundsl1 27.-722.130,-720), nPolys: 1. nbPaints:2, P1(385,-2162) - Pri386,-2162)}

RO053: [0159] EMR_SETPOLYFILLMODE [s=12] liade(1=AL TERMATE]}

RO0GD: [039] EMR_CREATEBRUSHINDIRECT (s=24] {inBrush(Z), styls{0=E5_S0LID, color.0x00426508]}

RO061: [037] EMR_SELECTOBJECT [s=12) {T able object 3=DBJ_ERUSH.(BS_SOLID] il

RPRONE? MAMFWMBE DFIFTENRIECT [em1 2 SibMbiceH 21

Artiflizs »| ATt HighQualty v | [HighQualityBicubic | |HighQualty <]

Ready Page 1/1 SCRL

Toolset — examination (MetafileExplorer

-

o MetafileExplorer - [Dotted_Lines.emf]

:Eg

File Edit View Window Help

B EIEY

P +BRS 2|
B\

- DWORD iType: 1
-. DWORD nSize: 116

- DWORD dSignature: ' EMF'
- DWORD nVersicn: 010000
- DWORD nBytes: 3792

- DWORD nRecords: 133

- WORD nHandles: 4

. WORD sReserved: 0

- DWORD nDescription: 13
- DWORD offDescription: 88
- DWORD nPalEntries: 0

- SIZEL szlDevice: {1024, 768}
- SIZEL szIMillimeters: {320, 240}
=%, EMR_SETMAPMODE

=% EMR_SETBKMODE

... DWORD iMode: TRANSPARENT
=%, EMR_SETWINDOWORGEX

. .. POINTL ptlOrigin: {0, 0}

% EMR_SETVIEWPORTORGEX

% EMR_SETWINDOWEXTEX

-4 EMR_SETVIEWPORTEXTEX
-4, EMR_SETPOLYFILLMODE

- EMR_CREATEBRUSHINDIRECT

Ready

- RECTL rclBounds: {43, -97@, 784, -68}
- RECTL relFrame: {13.44mm, -305.00mm, 245.00mm, -21.-25mm}

... DWORD iMode: MM_ANISOTROPIC

|3

m

—Draw

% Draw al

&
" Single-Step ﬂﬂ

" To Selection

1=

—

—Rectangle

* Header

43, 975, 784, -68
" Client

0, 0, 228, 471

™ Header Aspect
741, 908

I 1 =]
=1
741, 908

" Spedific

0 | Pan
=
e

»

m

(L

|

m

[[[scRL 4

Toolset — reading & writing (pyemf)

#!/usr/bin/env python
import os

import pyemf

import sys

def main(argv):
if len(argv) 2:
print "Usage: %s /path/to/poc.emf" argv|[0]
sys.exit(1)

emf = pyemf.EMF(width = 100, height = 100, density = 1)
emf.CreateSolidBrush(0x00f{00)
emf.SelectObject(1)

emf.Polygon([(@, @), (0, 100), (100, 100), (100, 0)])

emf.save(argv[1l])

if name_ __main__ ":

main(sys.argv)

The latest: EMF+

* GDI had all the fundamental primitives, but lacked many complex features

(anti-aliasing, floating point coords, support for JPEG/PNG etc.).

* Windows XP introduced a more advanced library called GDI+ in 2001.
e Built as a user-mode gdiplus.dll library, mostly on top of regular GDI (gdi32.dll).
* Provides high-level interfaces for C++ and .NET, therefore is much easier to use.

* GDI+ itself is written in C++, so all the typical memory corruption bugs still apply.

The latest: EMF+

Since there is a new interface, there must also be a new image format with its

serialized calls.

Say hi to EMF+!

Basically same as EMF, but representing GDI+ calls.

 Come in two flavours: EMF+ Only and EMF+ Dual.

* ,,0Only” contains exclusively GDI+ records, and can only be displayed with GDI+.

|II

 ,Dual” stores the picture with two sets of records, compatible with both GDI/GDI+ clients.

2.3 EMF+ Records

This section specifies the Records, which are grouped into the following categories:

MName

Clipping record types
Comment record types
Control record types
Drawing record types
Object record types
Property record types

State record types

Terminal Server record types

Transform record types

Section

231

23.2

233

234

2.3.5

236

237

2.3.8

239

Description

Specify clipping regions and operations.

Specify arbitrary private data in the EMF+ metafile.

Specify global parameters for EMF+ metafile processing.
Specify graphics output,

Define reusable graphics objects,

Specify properties of the playback device contaxt.

Specify operations on the state of the playback device context.
specify graphics processing on a terminal server,

Specify properties and transforms on coordinate spaces.

Formats and implementations in Windows

* Three formats in total to consider: WMF, EMF, EMF+.

 Three libraries: GDI, GDI+ and MF3216.
e MF3216.DLL is a system library with just one meaningful exported function:
ConvertEmfTolWmt.
* Used for the automatic conversion between WMF/EMF formats in the Windows

clipboard.
* ,Synthesized” formats CF. METAFILEPICT and CF_ ENHMETAFILE.

* No bugs found there. ®

Formats and implementations in Windows

Library Supported formats
GDI WMF, EMF
GDI+ WMF, EMF, EMF+

MF3216 EMF

In this talk, we’ll focus on auditing and exploiting the EMF parts, as this

is where the most (interesting) issues were discovered.

Attack scenario

* In all cases, Metafiles are processed in the user-mode context of the renderer process, in the

corresponding DLL.

* GDI, GDI+ and MF3216 iterate through all input records and translate them into GDI/GDI+ calls.
* Memory corruption bugs will result in arbitrary code execution in that context.

* Important: Metafiles directly operate on the GDI context of the renderer.
* Can create, delete, change and use various GDI objects on behalf of the process.
* Intheory, it should only have access to its own objects and be self-contained.

* However, any bugs in the implementation could enable access to external graphics objects used by the

program.

* A peculiar case of ,privilege escalation”.

Attack scenario: GDI context priv. escal.

security boundaries

process GDI context

— e e | — . e e e e e e S — — — e N — — — — — — — — — —— ——

EMF #1 file EMF #2 file EMF #3 file

Attack scenario: GDI context priv. escal.

security boundaries

process GDI context

—— — — — — — — — — — — —— — — — — — e e e | e s s e

EMF #1 file

Types of Metafile bugs

1. Memory corruption bugs
» Buffer overflows etc. due to mishandling specific records.
* Potentially exploitable in any type of renderer.

* Impact: typically RCE.

2. Memory disclosure bugs
* Rendering uninitialized or out-of-bounds heap memory as image pixels.
* Exploitable only in contexts where displayed images can be read back (web browsers, remote renderers).

* Impact: information disclosure (stealing secret information, defeating ASLR etc.).

3. Invalid interaction with the OS and GDI object mismanagement.

* Impact, exploitability = ???, depending on the specific nature of the bug.

Let’s get started!

 Earlier this year, | started manually auditing the available EMF implementations.

e This has resulted in 10 CVEs from Microsoft and 3 CVEs from VMware (covering

several dozen of actual bugs).

* Let’s look into the root causes and exploitation of the most interesting ones.

* Examples are shown based on Windows 7 32-bit, but most of the research applies to both

bitnesses and versions up to Windows 10.

Auditing GDI

Getting started

* To get some general idea of where the functionality in question is
implemented and what types of bugs were found in the past, it makes

sense to check prior art.

* A, wmf vulnerability” query yields just one result:

the SetAbortProc bug!

SetAbortProc WMF bug (CVE-2005-4560)

* Discovered on December 27, 2005. Fixed on January 5, 2006.

* Critical bug, allowed 100% reliable RCE while using GDI to display the

exploit (e.g. in Internet Explorer).
 Called ,Windows Metafile vulnerability”, won Pwnie Award 2007.
* No memory corruption involved, only documented features of WMF.

* So what was the bug?

The GDI API...

SetAbortProc function

during spooling.

Syntax

o |

The SetAbortProc function sets the application-defined abort function that allows a print job to be canceled

int SetAbortProc(
In HDC hdc,
I_In_ ABORTPROC lpﬁbnrtPrﬁcl

|

function pointer

... and the WMF counterpart

2.1.1.17 MetafileEscapes Enumeration

The MetafileEscapes Enumeration specifies printer driver functionality that might not be directly
accessible through WMF records defined in the RecordType Enumeration (section 2.1.1.1).

SETABORTPROC: Sets the application-defined function that allows a print job to be canceled during
printing.

In essence...

... the format itself supported calling:

SetAbortProc(hdc, (ABORTPROC)"controlled data");

and having the function pointer called afterwards.

Code execution by design.

Lessons learned

1. The format may (un)officially proxy calls to interesting / dangerous
API calls, so the semantics of each function and its parameters

should be checked for unsafe behavior.

2. The handling of WMF takes place in a giant switch/case in
gdi32!PlayMetaFileReconrd.

What about EMF bugs?

* Searching for ,,emf vulnerability” yields more diverse results.

* Most recent one: ,Yet Another Windows GDI Story” by Hossein Lotfi
(@hosselot).

* Fixed in April 2015 as part of MS15-035, assigned CVE-2015-1645.

* A heap-based buffer overflow due to an unchecked assumption about an

input ,,size” field in one of the records (SETDIBITSTODEVICE).

* In large part an inspiration to start looking into EMF security myself.

Lessons learned

* Main function for playing EMF records is

gdi32!PlayEnhMetaFileReconrd.

e Each record type has its own class with two methods:

» ::bCheckRecord() —checks the internal integrity and correctness of the

record.

e ::bPlay() — performs the actions indicated in the record.

GDI32 ::bCheckRecord array

Jtext:7VDAFDEYL dword JDAFDEYY dd 28987089 8h : DATA XREF: IsValidEnhMetaRecord(x,x)+25Tr
text:-7DAFDB7E& int (_ thiscall MR::*const * const afnbMRCheck}({struct tagHAMDLETABLE =) dd offset
-text:7DAFDBTC dd offset MREP::bCheckRecord{tagHANDLETABLE =)

text:7DAFDBEA dd offset HMRBP::bCheckRecord{tagHAHNDLETABLE =}

fext:7DAFDBEY dd offset MREBP::bCheckRecord{tagHANDLETABLE =)

text:7DAFDB8EE dd offset HMRBP::bCheckRecord{tagHANDLETABLE =}

text:7DAFDBEC dd offset MREP::bCheckRecord{tagHANDLETABLE =)

-text:7DAFDE9A dd offset MREPP::bCheckRecord({tagHANDLETABLE =)

text:7DAFDEOY dd offset HRBPP::bCheckRecord{tagHAHDLETABLE =)}

text:7DAFDB98 dd offset MRDD::bCheckRecord{tagHANDLETABLE =)

text:7DAFDB9C dd offset HMRDD::bCheckRecord{tagHAHDLETABLE =}

ftext:7DAFDBAG dd offset MRDD::bCheckRecord{tagHANDLETABLE =)

text:7DAFDBAL dd offset HRDD::bCheckRecord{tagHAHNDLETABLE =}

ftext:7DAFDBAS dd offset MRDD::bCheckRecord{tagHANDLETABLE =)

text:7DAFDB8AC dd offset HMREOF::bCheckRecord({tagHANDLETABLE =)

text:7DAFDBEA dd offset MRSETPIKELU::bCheckRecord{tagHAHDLETABLE ==}
text:7DAFDEBY dd offset MRGDICOMMEMT : :bCheckRecord{tagHANMDLETABLE =)
text:7DAFDBEB dd offset HRGDICOHHEMWT ::bCheckRecord{tagHAHNDLETABLE =)}
text:7DAFDBBC dd offset MRGDICOMMEMNT : :bCheckRecord{tagHANDLETABLE =)
-text:7DAFDECA dd offset MRGDICOMMENT : :bCheckRecord{tagHANDLETABLE =)
text:7DAFDBCY dd offset MRGDICOMMEMNT : :bCheckRecord{tagHANDLETABLE =)
-text:7DAFDECE dd offset MRGDICOMMEMT : :bCheckRecord{tagHANDLETABLE =)
text:7DAFDBCC dd offset MRGDICOMMEMNT : :bCheckRecord{tagHANDLETABLE =)
-text:7DAFDEDA dd offset MRSETCOLORADJUSTHEMT : :bCheckRecord{tagHAMDLETABLE =)
text:7DAFDEDY dd offset HMRGDICOHMHMEHT ::bCheckRecord{tagHANDLETABLE =)}
text:7DAFDEDE dd offset MRGDICOMMEMT : :bCheckRecord{tagHANMDLETABLE =)
text:7DAFDBDC dd offset HMRDD::bCheckRecord{tagHAHDLETABLE =}

-text:7DAFDBEA dd offset MRDD::bCheckRecord{tagHANDLETABLE =)

text:7DAFDBEL dd offset HMR::bCheckRecord{tagHAHDLETABLE =)}

text:7DAFDBES dd offset MRCREATEBRUSHIHWDIRECT: :bCheckRecord{tagHAHNDLETABLE =)
-text:7DAFDBEC dd offset MRCREATEBRUSHIMWDIRECT: :bCheckRecord{tagHANDLETABLE =)
text:7DAFDBFA dd offset MRCREATEBRUSHIHDIRECT: :bCheckRecord{tagHAHNDLETABLE =)

-text:7DAFD8F4 dd offset MRCREATEBRUSHINDIRECT::bCheckRecord{tagHANDLETABLE =)

GDI32 ::bPlay array

text:7DADKE2C dword 7DADKE2C dd 269898960 ; DATA XREF: PlayEnhnetaFileﬂecurd{x,x,x,x]+321r
text:7DADLREZA int { thiscall HR::=xconst * const afnbMRPlay){void =, struct tagHAMDLETABLE =, unsigned int)
text:7DADYE3L dd offset MRPOLYBEZIER::bPlay(void =,tagHAMDLETABLE =*,uint)
text:7DADYEZE dd offset MRPOLYGOM::bPlay{void =,tagHANDLETABLE =,uint)
-text:7DAD4EIC dd offset MRPOLYLIME::bPlay{void =,tagHANDLETABLE =,uint)
-text:7DAD4MELA dd offset MRPOLYBEZIERTO::bPlay{void =,tagHAHDLETABLE =,uint})
-text:7DAD4MELY dd offset MRPOLYLIMETO::bPlay(void =,tagHAMDLETABLE =*,uint}
-text:7DAD4ELE dd offset WRPOLYPOLYLIME::bPlay{void =,tagHANDLETABLE =*=,uint)
-text:7DAD4ELC dd offset HRPOLYPOLYGOM::bPlay(void =,tagHAHDLETABLE =*,uint)
text:7DADYESA dd offset HRSETWINDOWEXTEX::bPlay{void =,tagHAHDLETABLE =,uint)
text:7DADYESY dd offset MRSETWINDOWORGES::bPlay{void =,tagHAHMDLETABLE =,uint)
text:7DADYESE dd offset MRSETUVIEWPORTEXTEX::bPlay{void =,tagHANDLETABLE =,uint)
-text:7DADYESC dd offset MRSETUIEWPORTORGEX::bPlay{void =,tagHANDLETABLE =,uint)
text:7DADMEGA dd offset MRSETBRUSHORGEX::bPlay{void =,tagHAHDLETABLE =,uint})
text:7DADLEGY dd offset MREOF::bPlay(void =»,tagHAMDLETABLE =*,uint}

-text:7DAD4EGE dd offset WRSETPIRELU::bPlay{void =,tagHAMDLETABLE #=,uint}
-text:7DAD4EGC dd offset HRSETHAPPERFLAGS: :bPlay{void =,tagHAHDLETABLE =*,uint)
text:7DADYETA dd offset HRSETHAPHODE: :bPlay{void =,tagHAHDLETABLE =*,uint)
text:7DADYETL dd offset HRSETBKHODE::bPlay{void =,tagHAMDLETABLE =,uint})
text:7DADYETE dd offset MRSETPOLYFILLMODE::bPlay{void =,tagHANDLETABLE =,uint)
text:7DADYETFC dd offset MRSETROP2::bPlay{void =,tagHANDLETABLE =,uint)
-text:7DADMERA dd offset MRSETSTRETCHBLTMODE: :bPlay{void =,tagHAMDLETABLE =*,uint}
-text:7DAD4MERY dd offset MRSETTEXTALIGH::bPlay{void =,tagHAHDLETABLE =,uint})
-text:7DADYERS dd offset MRSETCOLORADJUSTHMEMT : :bPlay({void =,tagHAMDLETABLE =*,uint}
-text:7DADYERC dd offset HRSETTERTCOLOR::bPlay{void =,tagHANDLETABLE =*=,uint)
-text:7DADMEDA dd offset HRSETBKCOLOR::bPlay{void =,tagHAHDLETABLE =*,uint)
-text:7DAD4MEDY dd offset HROFFSETCLIPRGH: :bPlay{void =,tagHAMDLETABLE =,uint})
text:7DADYEDSE dd offset MRMOVETOEX::bPlay{void =,tagHANDLETABLE =,uint)
text:7DADYESC dd offset MRSETHMETARGH::bPlay{void =,tagHAMDLETABLE =*,uint}
-text:7DADMEAD dd offset MREXCLUDECLIPRECT::bPlay{void =,tagHAHNDLETABLE =,uint)
-text:7DAD4MEAL dd offset MRIMTERSECTCLIPRECT::bPlay{void =,tagHAMDLETABLE =*,uint}
-text:7DAD4EAR dd offset MRSCALEVIEWPORTEXTEX::bPlay(void =,tagHAMDLETABLE =*,uint}
-text:7DAD4EAC dd offset HRSCALEWINDOWESTEX::bPlay{void =,tagHANDLETABLE #=,uint)

text:-7DADYEBA dd offset MRSAVEDC::bPlay{void =,tagHAHDLETABLE =,uint})

That’s a starting point.

CVE-2016-0168

Impact:
Record:

Exploitable in:
CVE:

google-security-research entry:

Fixed:

File Existence Information Disclosure

EMR_CREATECOLORSPACE,
EMR_CREATECOLORSPACEW

Internet Explorer
CVE-2016-0168
722
MS16-055, 10 May 2016

Minor bug #1 in EMR CREATECOLORSPACEW

The quality of the code can be immediately recognized by observing many small, but

obvious bugs.

MRCREATECOLORSPACEW: :bCheckRecord() checks that the size of the record is 2 0x50

bytes long:
.text:7DBO1AEF mov eax, [esi+4]
.text:7DBO1AF2 cmp eax, 56h
.text:7DBO1AF5 jb short loc_7DBO1B1E

Then immediately proceeds to read a .cbData field at offset 0x25C:
.text:7DBO1AF7 mov ecx, [esi+25Ch]

Result: out-of-bounds read by 0x20C bytes.

Minor bug #2 in EMR CREATECOLORSPACEW

* Then, the .cbData from invalid offset Ox25C is used to verify the record

length:
.text:7DBO1AF7 mov ecx, [esi+25Ch]
.text:7DBO1AFD add ecx, 263h
.text:7DBO1B0O3 and ecx, OFFFFFFFCh
.text:7DBO1BO6 cmp eax, ecx
.text:7DBO1B0O8 ja short loc_7DBO1B1E

 The above translates to:

if (... && record.length <= ((record->cbData + 9Ox263) & ~3) && ...) {
// Record valid.

Minor bug #2 in EMR CREATECOLORSPACEW

* Two issues here:

1. Obvious integer overflow making a large . cbData pass the check.
2. Why would the record length be smaller then the data declared within? It
should be larger!

* It all doesn’t matter anyway, since the data is not used in any further
processing.

Minor bug #3 in EMR CREATECOLORSPACEW

e The .1lcsFilename buffer of the user-defined LOGCOLORSPACEW
structure is not verified to be nul-terminated.

* May lead to out-of-bound reads while accessing the string.

* As clearly visible, there are lots of unchecked assumptions in the
implementation, even though only minor so far.

* Keeps our hopes up for something more severe.

The file existence disclosure

e Back to the functionality of EMR_CREATECOLORSPACE[W] records: all they
do is call CreateColorSpace[W] with a fully controlled LOGCOLORSPACE

structure:
typedef struct tagLOGCOLORSPACE {
DWORD lcsSignature;
DWORD lcsVersion;
DWORD lcsSize;
LCSCSTYPE 1csCSType;

LCSGAMUTMATCH lcsIntent;
CIEXYZTRIPLE 1lcsEndpoints;

DWORD lcsGammaRed;

DWORD lcsGammaGreen;

DWORD lcsGammaBlue;

TCHAR lcsFilename[MAX_PATH];

} LOGCOLORSPACE, *LPLOGCOLORSPACE;

Inside CreateColorSpaceW

* The function builds a color profile file path using internal
gdi32!BuildIcmProfilePath.

 if the provided filename is relative, it is appended to a system directory path.

* otherwise, absolute paths are left as-is.

 All paths are accepted, except for those starting with two "/" or "\" characters:

if ((pszSrc|[0o] =
(pszSrc[1] =
// Path denied.

¥

Inside CreateColorSpaceW

* This is supposedly to prevent specifying remote UNC paths starting
with the "\\" prefix, e.g. \\192.168.1.13\C\Users\test\profile.icc.

 However, James Forshaw noted that this check is not effective, as the

prefix can be also represented as "\??\UNC\".
* The check is easily bypassable with:

\??\UNC\192.168.1.13\C\Users\test\profile.icc

CreateColorSpacelnternalW: last step

 After the path is formed, but before invoking the NtGdiCreateColorSpace

system call, the function opens the file and immediately closes it to see if it exists:

HANDLE hFile = CreateFileW(&FileName, GENERIC READ, FILE SHARE_READ, 0,
OPEN EXISTING, FILE ATTRIBUTE NORMAL, ©);
if (hFile == INVALID HANDLE_VALUE) {
GdiSetLastError(2016);
return 0;

}
CloseHandle(hFile);

Consequences

* In result, we can have CreateFileW() called over any chosen path.

* |f it succeeds, the color space object is created and the function returns

SUCCeSS.

* |f it fails, the GDI object is not created and the handler returns failure.

* Sounds like information disclosure potential.

* How do we approach exploitation e.g. in Internet Explorer?

Intuitive way: leaking the return value

* Since the return value of CreateFileW() determines the success of
the record processing, we could maybe leak this bit?

* Initial idea: use EMR_CREATECOLORSPACE as the first record, followed by a

drawing operation.

* If the drawing is never executed (which can be determined with the <canvas>

tag), the call failed.

Intuitive way: leaking the return value

e Unfortunately impossible.

* The gdi32! bInternalPlayEMF function (called by PlayEnhMetaFile
itself) doesn’t abort image processing when one record fails.

* A ,success” flag is set to FALSE, and the function proceeds to further operations.

* All records are always executed, and the return value is a flag indicating if

at least one of the records failed during the process.

Can’t we leak the final return value?

* No, not really.

* The return value of PlayEnhMetaFile is discarded by Internet
Explorer in mshtml!CImgTaskEmf: :Decode:
.text:64162B49 call ds: imp PlayEnhMetaFile@12

.text:64162B4F or dword ptr [ebx+7Ch], OFFFFFFFFh

.text:64162B53 lea eax, [esp+4C8h+var_49C]

Other disclosure options

* The other indicator could be the creation of a color space object via

NtGdiCreateColorSpace.

 Leaking it directly is not easy (if at all possible), but maybe there is

some side channel?

Using the GDI object limit

* Every process in Windows is limited to max. 10,000 GDI objects by default.

* The number can be adjusted in the registry, but isn’t for IE.

* If we use 10,000 EMR_CREATECOLORSPACEW records with the file path we want to

check, then:

* |If the file exists, we’ll have 10,000 color space objects, reaching the per-process limit.

* |fit doesn’t, we won’t have any color spaces at all.

* We're now either at the limit, or not. If we then create a brush (one more object) and try
to paint, then:
* If the file exists, the brush creation will fail and the default brush will be used.

* |If it doesn’t, the brush will be created and used for paiting.

GDI object limit as oracle illustrated

..

Color space

Color space

Color space

Limit

File exists:

Color space

Color space

Color space

Color space

Color space

Color space

Color space

Palette

Font

Bitmap

Brush

File doesn’t exist:

Brush

Palette

Font

Bitmap

Brush

DEMO

Vulnerability impact

 Arbitrary file existence disclosure, useful for many purposes:

» Recognizing specific software (and versions) that the user has installed, for

targetted attacks.
* Tracking users (by creating profiles based on existing files).

* Tracking the opening times of offline documents (e.g. each opening in

Microsoft Office could trigger a ping to remote server via SMB).

 Blindly scanning network shares available to the user.

CVE-2016-3216

Impact:
Record:
Exploitable in:
CVE:

google-security-research entry:

Fixed:

Memory disclosure
Multiple records (10)
Internet Explorer
CVE-2016-3216
757
MS16-074, 14 June 2016

Device Independent Bitmaps (DIBs)

* The image data itself.

In Windows GDI, raster bitmaps are i SLTHAPINFO
_ . {| BITMAPINFOHEADER |1

usually stored in memory in the form of i ;
DIBs: i ;
* Short header containing basic metadata i i
about the image, followed by optional i i
palette. il RGBQUAD }

|
|
bmiColors[...]; |
|
|
|

Bitmap data

.BMP files are just DIBs, too.

typedef struct tagBITMAPFILEHEADER <

WORD bfType;
DWORD bfSize;
WORD bfReservedl;
WORD bfReserved2;
DWORD bfOffBits;

} BITMAPFILEHEADER;

BITMAPFILEHEADER

bfOffBits

BITMAPINFO

BITMAPINFOHEADER

| RGBQUAD :
' bmiColors[...]; i
|
I |
|

Bitmap data

BITMAPINFOHEADER, the trivial header

typedef struct tagBITMAPINFOHEADER {
DWORD biSize;
LONG biWidth;

LONG biHeight; e Short and simple structure.
WORD biPlanes;

WORD biBitCount; * 40 bytes in length (in typical
DWORD biCompression;

DWORD biSizeImage; form)

DWORD biClrUsed: * Only 8 meaningful fields.

} BITMAPINFOHEADER;

s it really so trivial to handle?

biSize needs to be sanitized (can only be a few valid values).

biWidth, biHeight, biPlanes, biBitCount can cause integer overflows (often

multiplied with each other).
biHeight can be negative to indicate bottom-up bitmap.
biPlanes must be 1.

biBitCount must be one of {1, 2, 4, 8, 16, 24, 32}.

 For biBitCount < 16, a color palette can be used.

* The size of the color palette is also influenced by biClrUsed.

s it really so trivial to handle?

* biCompression can be BI RGB, BI RLES,BI RLE4,BI BITFIELDS, ...

e Each compression scheme must be handled correctly.
* biSizeImage must correspond to the actual image size.
* The palette must be sufficiently large to contain all entries.
* The pixel data buffer must be sufficiently large to describe all pixels.

* Encoded pixels must correspond to the values in header (e.g. not exceed

the palette size etc.).

Many potential problems

1. The decision tree for correctly handling a DIB based on its header is

very complex.
2. Lots of corner cases to cover and implementation bugs to avoid.

3. A consistent handling across various parts of code is required.

GDI functions operating on DIB (directly)

int StretchDIBits(

In
In
In
In
In
In
In
In
In

In
In

)

In
In

const
const

HDC
int
int
int
int
int
int
int
int
VOID
BITMAPINFO
UINT
DWORD

hdc,

XDest,

YDest,
nDestWidth,
nDestHeight,
XSrc,

YSrc,
nSrcWidth,
nSrcHeight,
*1pBits & |
*lpBitsInFDg‘
iUsage,

dwRop

L

N\

pointer to image data \

pointer to DIB header d

int SetDIBitsToDevice(

N\

-

)

In HDC
In int
In int
In DWORD
In DWORD
In int
In int
In UINT
In UINT
In const VOID
In_ const BITMAPINFO
In UINT

hdc,

XDest,
YDest,
dwlWidth,
dwHeight,
Xsrc,

YSrc,
uStartScan,
cScanlLines,
*1pvBits,
*1pbmi,
fuColorUse

GDI functions operating on DIB (indirectly)

In

UINT cPlanes,
UINT cBitsPerPel,
const VOID *1lpvBits

BOOL MaskBlt(

In HDC
In int
In int
In int
In int
In HDC
In int
In int

-f:rn:;HBITMAP
In int
In int
In DWORD

)

hdcDest,
nXDest,
nYDest,
nWidth,
nHeight,
hdcSrc,
nxsrc,
nYsrc,
hbmMask,
xMask,
yMask,
dwRop

Data sanitization responsibility

* In all cases, it is the API caller’s resposibility to make sure the headers

and data are correct and adequate.

* Passing in fully user-controlled input data is somewhat problematic,

as the application code would have to ,,clone” GDI’s DIB handling.

* Guess what? EMF supports multiple records which contain embedded

DIBs.

EMF records containing DIBs

* EMR_ALPHABLEND

* EMR_BITBLT

* EMR_MASKBLT

* EMR_PLGBLT

* EMR_STRETCHBLT

* EMR_TRANSPARENTBLT

* EMR_SETDIBITSTODEVICE
* EMR_STRETCHDIBITS

* EMR_CREATEMONOBRUSH

* EMR_EXTCREATEPEN

The common scheme

* Two pairs of (offset, size) for both the header and the bitmap:

offBmi (4 bytes): A 32-bit unsigned integer that specifies the offset from the start of this record to
the DIB header, if the record contains a DIB.

cbBmi (4 bytes): A 32-bit unsigned integer that specifies the size of the DIB header, if the record
contains a DIB.

offBits (4 bytes): A 32-bit unsigned integer that specifies the offset from the start of this record to
the DIB bits, if the record contains a DIB.

cbBits (4 bytes): A 32-bit unsigned integer that specifies the size of the DIB bits, if the record
contains a DIB.

Necessary checks in the EMF record handlers

* In each handler dealing with DIBs, there are four necessary
consistency checks:
1. cbBmiSrc is adequately large for the header to fit in.
2. (offBmiSrc, offBmiSrc + cbBmiSrc) resides fully within the record.
3. cbBitsSrcis adequately large for the bitmap data to fit in.

4. (offBitsSrc, offBitsSrc + cbBitsSrc) resides fully within the record.

Checks were missing in many combinations

Record handlers Missing checks

MRALPHABLEND: :bPlay
MRBITBLT: :bPlay
MRMASKBLT: :bPlay

MRPLGBLT: :bPlay #1, #2
MRSTRETCHBLT: :bPlay

MRTRANSPARENTBLT: :bPlay

MRSETDIBITSTODEVICE: :bPlay #3
MRSTRETCHDIBITS: :bPlay #1, #3
MRSTRETCHDIBITS: :bPlay

MRCREATEMONOBRUSH: :bPlay H1, #2, #3, #4

MREXTCREATEPEN: :bPlay

* This was just after a cursory look; Microsoft might have fixed more.

The consequence

* Due to missing checks, parts of the image description could be loaded from
other parts of the process address space (e.g. adjacent heap allocations):

* DIB header
e Color palette

* Pixel data

* Uninitialized or out-of-bound heap memory could be disclosed with the

palette or pixel data.

Proof of concept

* | hacked up a PoC file with an EMR_STRETCHBLT record, containing an 8-bpp DIB with palette

entries going beyond the file.
* Result: garbage bytes being displayed as image pixels.

* The same picture being displayed three times in a row in IE:

* The data can be read back using HTMLS5, in order to leak module addresses and other sensitive

data.

DEMO

Auditing ATMFD.DLL

Looking further into the list of EMF records

2.3.6 o=] 0TI 2 =T olo] /e BN 1NV 0 1= 159
2.3.6.1 EMR_DRAWESCAPE RECOIN .iiiiiiiiiiiii e iiiie e viee e eiaae e enaneeeernnnaees 161
2.3.6.2 EMR_EXTESCAPE RECOIN...uiiiiiiiiiiii ittt riee s e i e e nnaae e e rnnaes 161
2.3.6.3 EMR_NAMEDESCAPE RECOIN . ..uuiiiiiiiiiiieeeiiieee s iineessainnseeesansseserinnnsees 162

NamedEscape?

* DrawEscape() and ExtEscape() are both documented functions.

* They are also pretty well explored and researched.

* What’s NamedEscape()?

* The function is exported from gdi32.dll.
* However, no documentation is provided by Microsoft.

* Internally, it is a simple wrapper forwin32k !NtGdiExtEscape, the same syscall
that Escape() and ExtEscape() use.

* Passes along two input arguments which are otherwise set to 0.

What do the specs say?

2.3.6.3 EMR_NAMEDESCAPE Record
The MR_NAMEDESCAPE record passes arbitrary information to a specified printer driver.

Note: Fields that are not described in this section are specified in section 2.3.6.

=

2
0|11|2|3|4|5|6|7|8|9|0|1|2(3]|4|5|6|7|8|9|0|1|2(3(4|5|6|7|8]|°

w

Type

Size

iEscape

cjDriver

cjln

DriverName (variable)

Data (variable)

Sending data to a driver by name

In [Ext]Escape(), the driver is identified by the HDC.

* Here, we can directly specify the driver’s name!

The interface is similar to IOCTLs.
e Escape code (32-bit value).

* Input buffer of controlled size.

* Output buffer of controlled size (missing from EMR_NAMEDESCAPE).

What is the actual attack surface?

e Let’s search online for ,NamedEscape”.

First result

atmfd NamedEscape(0x2514) buffer-underflow vulnerability

Project Member Reporied by taviso@aoogle com, Jul 2 2015

A buffer-underflow vulnerability exists when using NamedEscape(@x2514) in

kd> kv

Child-SP RetAddr

Tffff880 0598458 {300 02acdetl
FHfff880° 85908460 fffff800° 02acd7bc

fffff880° 059e85a0 fffff800 02afll3d :

fffff880° 859e85e@ fffffB00° @2aeffl5

nt'RtlpExecuteHandlerForExcept10n+9xd
85928610 fffff800° 92bB08L :
859e8cf0 fFFffE00° 02acdf42

FFFFFE80°
FFFFF880°
FFFFFB80°
FFFFF880°
FFFFFB80°
FFFFFE80°

859e9390 ffff800° 02ac3aba

0959e9570)
859e9708 fffff960° 00120411

win32k ! SURFACE: bDeleteSurface+9x264

FFFFFBB0"
FEFFFBE0"
FFFFFBBO"
FEFFFE80"
FEFFFEEQ"
fffff880° 859e%92ed BOOOOBER 76f5deVa
(TrapFrame @ fffff8808 859e%acl)

859e9850 fffff960° 00197940

B0PEE00" PPO8.318 0EOEOEEE" GDODOBEA

This bug is subject to a 7 day disclosure deadline,

859e957@ fffff968° 00197fac :

059e98b0 ff{ff960° 00197087 :
05929930 fffff800°02d4990cd :
08599960 fffff800°02d7d2ba :
05929360 {800 02acdb53 :

FFFFFEE0°
FFFFFEE0"
: ©0000000"
20000000

Bepeaeae”

. begeaped”
eeceeeee”
Begeaeee”
8e0ea000"
fffffage’
. begeaeed”

Bepeaeae”

: Args to Child
: booeecea”
: FFfff88e”
fffffeee”
fffffaee”

2080ea3b
859e94c8
82ceb248
82c1931c

859e94c8
859e94c8
[als[slslels]e
fegeaesl

[als[slslsla]sle]

2088abac
20000000
[als[slslels]e
20000000
06T426e0
[als[slslsla]sle]

[als[slslsla]sle]

28020200° c0ae0085
FFfff880° ©59e8d20
fffffiee @2c23514
FFfff880° ©59e8658

FFfff880° ©59e8d20
28080000° 000000680
@epeeee0” 0roeRoRs
fffffoee" c3if8lene

B0peReae" eaBeRaa1

20000000° B0ER00680
aeee0000" B0BE0001
08000000° 00000000
f8000000" GoBE0001
fffffiBe eooeoaen
28000000° BEBE00680

BepeReae" PRBRRaBe

atmfd.

fffff960 e0l97fac
BeBEREEE" BDBERR0E
fffff3ee e2as51eae
{380 959e94c8

fffff380° o0oopa0a
fffff380 0599578
BoBeReRe” o0RoR400
BeoeseEe” eoveaal

fffffoee” c3fgleae

FFFffo8e" cle@5330
fffffa8e 074d7b50@
BoBeReRe" DPRoRRRE
fffffado 0642600
fffffade @74d7b5@
BeBEREEE" BDBERR0E

BeBEREEE" BDBERR0E

patch, then the bug report will automatically become wvisible to the public.

A small testcase is attached.

[testc
65KB Download

[j fontdata.h
36MB Download

FFFFFB80°
FFFFFB00°
FFFFFB80"
FFFFFB00°

80008000°
FFFFFO00"
80008000°
42424242°

FFFFFI00°

FFFFFO0O"
£0000000"
FFFFfa8e’
£0000000"
80000000"
£0080000°

fepeneae”

959e8d20
82af1630

oogeaedl :
c3f81000 :

[slsls]s ulele]
41414141

Pogedede

20000000 :
00000001 :
07447b00 :
00000000 :
00020000
1 nt!KiSystemServiceCopyEnd+@x13

[sslslslslslele]

Pogedede

: Call Site

: nt!KeBugCheckEx

: nt!KiBugCheckDispatch+8x69
859e94c8
82351000 :

nt!KiSystemServiceHandler+@x7/c

nt!RtlDispatchException+@x415
nt!KiDispatchException+8x135

: nt!KiExceptionDispatch+@xc2
: nt!KiPageFault+8x23a (TrapFrame @

win32k!NtGdiCloseProcess+@x2c9
win32k!GdiProcessCallout+@x208
win32k!W32pProcessCallout+@xeb
nt!PspExitThread+@xddl
nt!NtTerminateProcess+8x138

Bx76f5de7a

as the issue is being exploited in the wild. If 7 days elapse without a broadly available

Hacking Team ATMFD.DLL O-day

e Discovered in the leaked data dump on July 7, 2015.
* Fixed by Microsoft on July 14 (MS15-077, CVE-2015-2387).

* Local privilege escalation to ring-0 through vulnerable ATMFD.DLL.
* Bug triggered through NamedEscape("ATMFD.DLL", 0x2514).
 Also used in the exploit: NamedEscape("ATMFD.DLL", ©@x250A).

* Hey, | know this driver!

NamedEscape + ATMFD

« ATMFD.DLL is a very special case for the NamedEscape interface.

* Itis one of a few, or perhaps the only driver using this interface for communication.

* Itis even specifically checked for in the win32k!GreNamedEscape function:

.text:
.text:
.text:
.text:
.text:

BFO9DC326
BFI9DC32C
BFODC32E
BFODC333
BFO9DC334

cmp
jnz

push
push
call

esi, PDEV * gppdevATMFD

short loc_ BF9DC33F

offset aAtmfd dll ; "atmfd.dll"
ebx ; wchar_ t *

__wcsicmp

Finding the handler function

* Locating the escape function within ATMFD.DLL is easy.

 Just search for some magic values — e.g. 0x2514 — in (hex)decimal in IDA Pro

or Hex-Rays.

* You'll find it right away.

* |[n case of the latest Windows 7 32-bit, the address is 0x14654.

A broad control flow graph

What do we learn?

* 13 escape codes supported, each expecting a specific input length:

Escape code Input data length
0x2502 0
0x2509 194
0x250A 12
0x250B 194
0x250C 48
0x250D >88
Ox250E 1656
0x250F 0
0x2510 6
0x2511 32
0x2512 1124
0x2513 148

0x2514 26

Analysis was difficult

* Sure we know the escape codes and input data sizes, but:
* No debug symbols are available, so no function names, structures, data types etc.
* Unknown functionality of the codes.
* Unknown format of input and output data.
* Unknown internal structures.

* No public documentation available.

* Not the most convenient target to look into (very high entry bar).

* Intended to have a deeper look in 2015, but got distracted and gave up.

Giving it another shot

* When | noticed that the functionality was also reachable from within

EMF in 2016, | decided to give it another shot.

* Web browser = ring-0 execution potential?

* Let’s see what other system modules use the NamedEscape()

function!

| Find texd: namedescape

Whole words onhy | ANSI charset (Windows)

Case sensitive ASCI charset (DO5)

Regbx (2) Unicode UTF-16

Hex LUTF&

Find files MO T containing the test Cifice xml (docx, xsx, odt etc)+EFLIB

Search results:

¢ \Windows\System 32Natmlib dll

ATMLIB.DLL?

Description
File descrption Windows NT OpenType/Type 1 API Library.
Type Application extension
File wersion h.1.2.243

Product name Adobe Type Manager
Product version 5.1 Build 243

Copyright =15983-1530, 1993-2004 Adobe Systems Inc.
Size 33.5 KB

Date modified 2016-05-13 23:27

Language English (United States)

Legal trademarks Adobe, Multiple Master, ATM, Adobe Type Ma
Orginal filename ATMLIB.DLL

The missing part of ATM

* Part of the Adobe Type Manager suite.

* Family of computer programs for rasterizing PostScript fonts (Type 1 and OpenType).

Ported to Windows (3.0, 3.1, 95, 98, Me) by patching into the OS at a very low level.

First officially incorporated into Windows in NT 4.0.

ATMFD.DLL is the kernel-mode font driver.

ATMLIB.DLL is the user-mode counterpart, which provides the ATM API to client

applications.

Best part about ATMLIB.DLL?

* Debug symbols available from the Microsoft servers!

Mames window @

Address Public a

ATMAddFontExi(x,xx,xx) 500052EF
ATMAddFontEsed(xxxxx) 500051B8
ATMADdFontEsxW (x,x,%,%,%) S00049CE
ATMAddFont©W (i, 500052FF
ATMEBBoxBazseXY Show T eactW (3, 1,3, 30,30,30,30,30,30,30,3,) 50001747
ATMBeginFontChange() 50001645
ATMClient(x) 50001844
ATMEndFontChange() 500016E2
ATMEnumFonts(x) 500043E4
ATMEnumFontsW i x) 500043C5
ATMEnumMMFonts(x,x,x) 50004494
ATMEnumMMFonts(xx) 50004432
ATMEnumMMFontsWix) 5000440F
ATMFinish() 50002503
ATMFont&vailablel x i) 5000267E
ATMFontivailabled(x,x w0 50002613
ATMFontivailableW (xx i x x) 50002558
ATMFontSelected(x) 5000268E
ATMForceFontChange() 500016590
ATMGetBuildStrix) 50002837
ATMGetBuildStra(xx) 50002700

=
[=1]
3
m

[

[y N Y N e Y Y Y N Y Y N Y Y Y Y Y N

1

=
=
m
—_
Q
2
[oy]
]
iy

signed int _ fastcall CallDriver{int a1, int a2, int a3, char ak)

{

const wchar_t =uk; ff ecil@
signed int wé; // [esp+18h] [ebp-1Ch]E3

vl = L"ATHFD .DLL™;
if { *callMSDriver)
vl = L"ATHFDA.DLL";
v = HamedEscape(8, vi4, a1, a2, a3, a4 *= 8 %7 a2 - B, a4 *= @8 7 a3 :© B)
ifF § *ud)
v = -219;
return vo;

-
wrefs to CallDriver{x x x,x)

Direction Typ Address
p ATMProperlyloaded()+23

% De.. p ATMProperlyloaded()+36
Do.. p ATMBeginFontChange()+29
Do.. p ATMEndFontChange()+47
Do.. p ATMGetVersion()+25

Do.. p ATMSetFlags(ex)+38

Do.. p sub_50001F93+AC

Do.. p sub_50001F93+10C

Do.. p sub_50001F93+14D

Do.. p ATMFontfvailableWxw ...
Do.. p ATMGetFontBBox(xx)+57
Do.. p ATMGetBuildStrW(xx)+17
Do.. p ATMGetBuildStrA(xx)+17
Do.. p ATMMakePFMW(xxx)+ D1
Do.. p ATMMakePFMW(xx%x)+10C
Do.. p ATMGetNtmFieldsW(oxx)+...
Do.. p DIMain(gxx)+31

Do.. p ATMGetFontPathsWixx)+99
Do.. p ATMGetMenuMameWixx)+...
Do.. p ATMGetPostScriptlameW(x...

Text

call

call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call

@ECallDriver@16 @ CallDriver(,x,xx)
@CallDriver@1a : CallDriver(x,x,x,x)
@CallDrrver@16 ; CallDriver(xx mx x)
@CallDrrver@16 ; CallDriver(xx mx x)
@CallDriver@16 ; CallDriver(xxmxx)
@ CallDriver@16 : CallDriver(xx,xx)
@CallDriver@1a : CallDriver(x,x,xx)
@CallDriver@1a : CallDriver(x,x,xx)
@CallDriver@16 : CallDriver(x,x,xx)
@CallDriver@1a : CallDriver(x,x,x,x)
@CallDrrver@16 ; CallDriver(xx mx x)
@CallDrrver@16 ; CallDriver(xx mx x)
@CallDrrver@16 ; CallDriver(xx mx x)
@CallDriver@16 ; CallDriver(xxmxx)
@ CallDriver@16 : CallDriver(xx,xx)
@CallDriver@1a : CallDriver(x,x,xx)
@CallDriver@1a : CallDriver(x,x,xx)
@CallDriver@16 : CallDriver(x,x,xx)
@CallDriver@1a : CallDriver(x,x,x,x)
@CallDrrver@16 ; CallDriver(xx mx x)

Ok][Cancel][Search][

Help

Linel of 20

Reverse engineering escape codes

Name Escape code Input data length
ATMProperlyloaded 0x2502 0
ATMBeginFontChange 0x2503 0
ATMEndFontChange 0x2506 0

ATMFontAvailable, ATMGetPostScriptName 0x2509 194
ATMGetFontBBox 0x250A 12
ATMGetMenuName 0x250B 194
ATMGetGlyphName 0x250C 48

ATMMakePFM 0x250D >88
ATMGetFontPaths 0x250E 1656
ATMGetVersion Ox250F 0
ATMSetFlags 0x2510 6
? 0x2511 32
? 0x2512 1124
ATMGetNtmFields 0x2513 148
ATMGetGlyphList 0x2514 >6

[[] ATMLIB & ATMFD
[] ATMLIB only

[] ATMFD only

Googling for the symbol names...

* We can find three extremely interesting documents:

1. Adobe Type Manager Software APl With Multiple Master Fonts: Macintosh,
2. Adobe Type Manager Software APIl: Windows

3. Adobe Type Manager® Software APl for Windows® 95 and Windows NT® 4

From there...

 Function declarations.
e Structure definitions.
 Constant and enumeration names.

 Overall overview of various ATM mechanics.

From there... (functions)

ATMFontAvailable

extern BOOL ATMAPI ATMFontAvailable (
LPSTR IpFacename,
int nWeight,
BYTE cltalic,
BYTE clUnderline,
BYTE cStrikeOut,
int ATMFAR"IpFromOutline);

Note: Version 1.0

ATMFontAvailable() checks whether a Type 1 font outline 1s available and
can be rendered. All of the parameters except *[pFromQOutline correspond to
parameters passed to the Windows GDI function CreateFont().

The [pFacename parameter 1s a long pointer to the face name of the font to be
vertfied. ATMFontAvailable() returns False if ATM can not respond to a
request for the given font. It the function returns True. then ATM can respond
in some way to the given font. See the description of the *pFromQOutline
parameter. below,

From there... (structures)

ATMFontSpec

ATMEnumFontProc

ATMAMNMetricsHeader

typedef struct {
char faceName [LF_FACESIZE];
WORD styles;

} ATMFontSpec, ATMFAR *LPATMFontspec;

typedef BOOL
(ATMCALLBACK ATMEnumFontProc) (
LPLOGFONT IpLogFont,

LPSTR IpPostScriptName,
WORD flags,
DWORD dwlserData);

typedef ATMEnumFontProc ATMFAR *LPATMEnumFontProc;

typedef struct{
WORD mmersion;
WORD mmklags;
char mmCopyright[72];

From there... (constants)

7.1

ATM_NOERR

ATM_INVALIDFONT

ATM Return Values and Flags

The following return values. flags. type bits. and flag bits are used by the
functions defined in the ATM 4.01 APIL. They are supported in both the 16-bat
and 32-bit libraries. except where noted. Additionally. they are supported for
all functions manipulating single- and double-byte fonts.

Return values for non-Boolean functions

0
The normal return value

l
An invalid font error: the font is not consistent

Reverse engineering the escape handlers

e With all this, analysis of relevant ATMFD functions becomes much easier.

e Operation names are roughly known, and they carry information about the escape’s
functionality.

* Some structures are fully known, other can be recovered through RE of ATMLIB.DLL.

* The semantics of ATMFD’s return values and other enums are much clearer now.

* We can directly call ATMLIB.DLL functions and do run-time debugging.

e Some strings in ATMFD.DLL can be helpful, as well.

Let’s manually audit all 13 escape codes implemented

in ATMFD.

GPZ #/81

Impact:
Escape code
CVE:

google-security-research entry:

Fixed:

Out-of-bound read
0x2511
None
781
WontFix

Escape code 0x2511

* The escape code is not referenced in ATMLIB.

* Unknown name or functionality.

* Required input buffer size is 32 bytes:

case 0x2511
if (cbInput == 32) {
ret = ATMUnspecifiedScramble(lpBuffer);
goto 5
}

break;

ATMUnspecifiedScramble

* Doesn’t operate on any font objects, only the input data.
* The input structure can be reverse engineered to the following:

struct ATM 2511 input {
DWORD dword _0;
DWORD dword_4;
DWORD dword_8;
WORD word C;
WORD padding;
DWORD dwords 10[4];

s

Unknown logic

if (input->word C > 32) {
input->word_C = 32;
}
for (WORD i = @; i < input->word C; i++) {
DWORD value = Scramble(input->dwords 10[i]|, global dword 1);

Unknown logic

» GetUnspecifiedScrambledValue() transforms a static 32-bit integer with

logic/arithmetic operations and returns it.
e Scramble(x, y) combinestwo 32-bit integers into one and returns it.
* The purpose of the logic is undetermined, but also irrelevant.

* Have you noticed that:

* The dwords_10 array at the end of the structure only has 4 elements (enforced by the

required size of the structure).

* The function makes it possible to operate on up to 32 elements of the table!

Out-of-bounds read access

* Accesses to input->dwords 10[4..31] are all invalid.
* That’s an overread by as much as 28 x 4 = 112 bytes!
* Not particularly useful, could cause a DoS by crashing the kernel.

* But... remember that the NamedEscape surface is available through EMF?

* The ring-0 out-of-bounds access could be triggered remotely, e.g. through Internet

Explorer or Microsoft Office.

Something’s wrong...

 When trying to repro this through IE, | reached the affected code, triggered
the out-of-bounds access, but never got a system crash!

e Even with Special Pools enabled.

 What’s up? Wasn’t the pool allocation supposed to end up near the end of

a page boundary at least once?

* |t turned out that the input buffer was not on the pools, but kernel stack!

Where does the buffer come from?

* Let’s look into win32k INtGdiExtEscape, the top-level handler of the system call:

.text:BF822691 loc_BF822691:

.text:BF822691 lea eax, [ebp+var_3(C]
.text:BF822694 mov [ebp+input_buffer], eax
.text:BFAB95AD cmp esi, 32

.text :BFAB95BO jle loc_BF822691

.text:BFAB95C3 push esi 5 NumberOfBytes

.text:BFAB95C6 call ds: imp__ ExAllocatePoolWithTag@l2
.text:BFAB95CC mov [ebp+input_buffer], eax

In C:;

if (NumberOfBytes > 32) {

lpBuffer = ExAllocatePoolWithTag(...);
} else {

1pBuffer = &local_buffer;

¥

Close, but no cigar ®

* The input buffer size must be exactly 32 bytes.

 For all sizes < 32 bytes, a local buffer is used for storage.

* Performance optimization.

* There are always more than 112 bytes (being overread) of stack memory

after the local buffer.
* Higher level stack frames, KTRAP _FRAME, padding etc.

* Due to this extremely unfortunate coincident, a kernel crash may never occur.

Local information disclosure?

* As the out-of-bounds values are persistently stored (in some form) by ATMFD, it could be possible

to extract them back to user-mode.
* Onlyin alocal scenario.

* Not trivial, if at all possible:
* The values are severely mangled before being saved.

* There is no obvious route to reading them back through the available interfaces.

* Microsoft classified the issue as WontFix.

* Non-exploitable by pure accident, but the bug is still there and could become exploitable if conditions change.

e A great example of some very obscure functionality included in the ATMFD escape interface.

CVE-2016-3220

Impact:
Escape code
CVE:

google-security-research entry:

Fixed:

Pool-based buffer overflow
0x250C
CVE-2016-3220
785
MS16-074, 14 June 2016

ATMGetGlyphName ()

* Not an official symbol, but a name assigned based on analysis of

ATMLIB.

e Basic facts (on x86):

* The input buffer size is enforced to be 48 bytes.

* As the name implies, the function operates on a specific font object, and

returns the name of one of its glyphs.

* The font is identified by its kernel-mode address, placed at offset 4.

Say what?

* A user-mode client identifies a font object with a kernel-mode

address.

* Legacy mechanism, implemented as an optimization or to simplify the

overall code logic.

e How does the client know the address?

Obtaining font kernel address

PVOID address;
GetFontData(hdc, 'ebdA', 0, &address, sizeof(PVOID));

GetFontData()

The function is used to read data from specific SFNT tables of the DC’s font file.

 cmap, head, hhea, hmtx, maxp, etc.

,ebdA” (backwards for ,Adbe”) is a magic table ID, separately handled by ATMFD.

If the special ID is used and the size of the request is the length of the native

word, the kernel-mode font address is returned instead of actual font data.

Kernel ASLR bypass by design.

Back on the subject

* The control flow of the escape code handler is deep and complex.

* Let’'s examine each stage of execution respectively.

ATMGetGlyphName () step by step #1

1. The i/o buffer size is enforced to be 48 bytes.

2. The font object is located based on the kernel-mode address passed by

the client.
3. The font file contents are mapped into memory (?).

4. The function checks if it’s a Type 1 or OpenType font.

* The Type 1 implementation is not particularly interesting, let’s follow the OTF one.

ATMGetGlyphName () step by step #2

5. A function is called with a controlled 16-bit glyph index and a
pointer to offset 8 of the i/o buffer (to copy the name there).

 Let’s name it FormatOpenTypeGlyphName().

6. To retrieve the actual glyph name from the .OTF file, another
function is used, let’s call it GetOpenTypeGlyphName().

* Here’s where the interesting stuff happens.

GetOpenTypeGlyphName()

* If the glyph ID is between 0 and 390, the name is obtained from a

hard-coded list of names:

-data:BOB528E8 off _G2BER dd offset a notdef B ; DATA XREF: GetOpenTypeGlyphHame+24Ty
.data: 885 28BER : U.notdef™
-data:BO8528EC dd offset aSpace 8 : Space™
.data:a808528F 08 dd offset aExclam ; 'exXclam®
-.data:a0a528FY dd offset afuotedbl : quotedbl™
-data:A0808528F8 dd offset aHumbersign ; '‘numbersign®
.data:a888528FC dd offset aDollar ;: ""dollar"
-data: 8088529484 dd offset aPercent : percent™
-.data:@088529084 dd offset aAmpersand ; 'ampersand”
-data:B88852988 dd offset aQuoteright ; "'quoteright”
-data:B8as5294c dd offset aParenleft : parenleft”
-.data:88852918@ dd offset aParenright ; 'parenright”
.data:88852914 dd offset afsterisk : "asterisk"
.data:aae52918 dd offset aPlus : plus"

GetOpenTypeGlyphName()

* Otherwise, the name is extracted from the .OTF file itself, by reading

from the Name INDEX.

* String arrays are represented with a list of offsets of consecutive
strings.

* The length of each entry can be determined by subtracting the offset of N+1
and N.

Name INDEX structure

Type Name Description
Cardle6 count Number of objects stored in INDEX
OffSize offSize Offset array element size
Offset offset [count+1] Offset array (from byte preceding object data)

Card8 data[<varies>] Object data

GetOpenTypeGlyphName () pseudo-code

PushMarkerToStack();

int glyph name_offset = ReadCFFEntryOffset(glyph id);
int next _glyph name offset = ReadCFFEntryOffset(glyph id + 1);

*pNameLength = next _glyph name_offset - glyph name_offset;
EnsureBytesAreAvailable(next _glyph name offset - glyph name_offset);

PopMarkerFromStack();

Internal font stack

* Each font object has an internal array of 16 elements, each 32-bit

wide.

* ATMFD debug messages can help us understand their meaning:

"fSetPriv->HeldDataKeys[fSetPriv->nHeldDataKeys-1] == MARK"
"fSetPriv->nHeldDataKeys >= 0"
"fSetPriv->nHeldDataKeys > @"

"fSetPriv->nHeldDataKeys < MAXHELDDATAKEYS"

Internal font stack

* The stack is internally called HeldDataKeys.
* The element counter is nHeldDataKeys.
 MAXHELDDATAKEYS equals 16.

* A special marker value of -1 is called MARK.

* It’s still not very clear, what the purpose of the stack is.

Stack management

* For memory safety, it’s important that operations on the stack are
balanced.
* Otherwise, adjacent fields in the font structure, or adjacent allocations on the
pools could be overwritten.
* In the code above, it all looks good: 1x PUSH and 1x POP afterwards.

* As long as the functions in between don’t perform any stack operations by

themselves.

GetOpenTypeGlyphName () pseudo-code

B Fully controlled
PushMarkerToStack();

int glyph_name_offset = ReadCFFEntryOffset(glyph_id);

int next _glyph name offset = ReadCFFEntryOffset(glyph id + 1);

*pNameLength = next _glyph name_offset - glyph name_offset;

EnsureBytesAreAvailable(next _glyph name offset - glyph name_offset);

PopMarkerFromStack();

EnsureBytesAreAvailable()

* Custom name based on reverse engineering.

* Probably not only ensures bytes are available, but also retrieves

them.
e By fully controlling the 32-bit parameter, we can cause it to fail.

e How does it handle failure?

Error handling

* An exception is generated and handled internally by the function.

* As part of it, all items up to and including -1 are popped from the stack.
* This interferes with the stack balance, as the element counter is decreased again as
part of normal execution.
* After the escape’s handler execution, nHeldDataKeys is smaller by 1 than
before.

* We can indefinitely set it to -1, -2, -3, ... and write data to those indexes.

* The result is a pool-based buffer underflow.

Pool-based buffer underflow

* Persistently decrementing the counter by 1 requires writing Oxffffffff
to the current out-of-bounds element.

* With some pool massaging, this primitive should be sufficient to get arbitrary

code execution.

* Other values may be written to the stack, too (mostly kernel-mode

addresses), which should further facilitate exploitation.

* The core of a basic proof of concept is very simple.

PVOID address;
GetFontData(hdc, 'ebdA', 0, &address, sizeof(PVOID));

while (1) {
BYTE buffer[48] = { 0 };
*(WORD *)&buffer[2] = 391;
*(PVOID *)&buffer[4] = address;

NamedEscape(NULL, L"ATMFD.DLL"™, ©x250C,
sizeof(buffer), buffer,
sizeof(buffer), buffer);

SPECIAL_POOL_DETECTED MEMORY_CORRUPTION (c1l1)
Special pool has detected memory corruption.
stack backtrace will reveal the guilty party.
Arguments:
Argl: fe67ef50,
Arg2: fe67ee28,
Arg3: 006Ta0obo,
Arg4d: 00000023,

corrupted

Typically the current thread's

address trying to free

address where bits are corrupted

(reserved)

caller is freeing an address where nearby bytes within the same page have been

Debugging Details:

STACK_TEXT:

9f4963e4
9496434
9496718
91496818
9f49683c
9f49691c
9496984
91496998

82930dd7
829318d5
82930c74
82938b57
8293963d
82973b90
96a609cc
96b44ecl

00000003
00000003
000000c1
000000c1
fe67ef50
fe67ef50
fe67ef50
fe67ef60

c453df12
fe67e000
fe67ef50
fe67ef50
fe67e000
00000000
00000000
09fe969f

00000065
fe67ee28
fe67ee28
fe67ee28
fe67ef50
fe67ef50
fe67ef60
00000000

nt!RtlpBreakWithStatusInstruction
nt!KiBugCheckDebugBreak+0x1c
nt!KeBugCheck2+0x68b
nt!KeBugCheckEx+0x1le
ntIMiCheckSpecialPoolSlop+0x6e
nt!MmFreeSpecialPool+0x15b
nt!ExFreePoolWithTag+0xd6
win32k!VerifierkEngFreeMem+0x5b

Vulnerability conditions and requirements

* A specially crafted OpenType font must be loaded in the system.

 Name INDEX with two specific, 32-bit offset entries.

* Trivial in a local scenario, but could also be possible in a remote one, for targets which

support embedded fonts.

* The kernel-mode address of the font object must be specified in the i/o buffer.
* Not a problem in a local scenario, as shown above.
* Nearly impossible in a remote scenario due to insufficient interaction capabilities.

* On 32-bit platforms, there is realistically ~¥25 unknown bits, so ~¥33m possible addresses.

* Maybe could be brute-forced within somewhat realistic file sizes.

Vulnerability conditions and requirements

* To get any benefit from the memory corruption, pool memory must
be massaged, to overwrite some actually meaningful data.

* Possible in a local scenario, very difficult or nearly impossible in a remote one.

* [n summary:

» Elevation of Privileges as a local user.

* Maybe a DoS with some luck and a specific configuration (x86) in a remote

scenario.

NamedEscape attack surface summary

Extremely old and obscure communication interface.
* Bad coding practices, such as sharing ring-0 addresses with ring-3 code.

* |t was probably long forgotten and would likely stay that way if not for the HackingTeam 0-day.

Unfortunately no browser—>kernel exploits found.
* |t was close, and a long shot anyway.
* Some interesting issues were uncovered, anyway.

* | also rediscovered the HT vulnerability.
Audited manually as a whole, but some bugs could obviously still lurk there.

A prime example of a deep system interface that the EMF files are able to easily touch.

Auditing GDI+

Out of time, please see the full slide deck released after the conference.

Hacking VMware Workstation

EMF in print spooling

* EMF files are also used heavily in print spooling.

* This opens up more format-related attacks vectors, in the form of

printer drivers (and other related software).

* One such feasible target is VMware Workstation.

Virtual printers

A feature which allows a virtual machine to print documents to printers available on the

host (basically printer sharing).

A feasible VM escape attack vector.

To my best knowledge, it was enabled by default in 2015, but it’s no longer the case

(likely thanks to bugs reported by Kostya Kortchinsky).

Still a frequently used option.

Virtual printer

The virtual printer device allows a virtual machine with YMware Tools to
print to any printers configured on your host.

v | Enable virtual printers

Architecture

Virtual Machines

VM #3

poc.exe

VM #2

VM #3

COM1

Y

vmware.exe

Windows Named Pipes

A 4

vprintproxy.exe

Architecture

* The attacked process is vprintproxy.exe running on the host.

* Receives almost verbatim data sent by an unprivileged process in a guest

system.

* Quite a communication channel.

e The data is sent in the form of EMFSPOOL files.

e Similar to EMF, with the extra option to embed fonts in various formats.

TPView

* More specifically, the most interesting EMF handling takes place in TPview.dll.
* Together with some other printer-related libraries, they all seem to be developed by a third
party, ThinPrint.
* Mostly just falls back to GDI, but also performs specialized handling of several
record types.

e Used to be full of simple bugs, but Kostya found (nearly) all of them!

* Took another look, discovered a double-free and out-of-bounds memset (), but that’s all

(issues #848 and #849).

JPEG2000 decoding

* There was one last custom EMF record which seemed completely
unexplored.
* |D =0x8000.

* Based on debug strings, it was clear that it was related to JPEG2000 decoding.

* | am no expert at JPEG2K, and the code doesn’t seem to be

convenient for manual auditing.

e Let’s fuzz it?

Approaching the fuzzing

* Best fuzzing: on Linux, at scale, with AddressSanitizer and coverage

feedback.

» After some research, it turns out that the JPEG2000 decoder is authored by
yet another vendor, LuraTech.

 Commercial license, source code not freely available.

e So, are we stuck with TPview.dll wrapped by VMware Workstation?

* Still feasible, but more complex, slower, and less advanced.

More research

* After some more digging, | found out that the same vendor released a
freeware JPEG2000 decoding plugin for the popular IrfanView program.

* JPEG2000.DLL.

* Cursory analysis shows that this is the same or a very similar code base.

* The plugin interface is an extremely simple to use, and resembles the

following definition.

HGLOBAL Readl]PG2000(IN PCHAR 1lpFilename,
IN DWORD dwUnknown,
OUT PCHAR lpStatus,
OUT PCHAR 1lpFormat,
OUT LPDWORD 1lpWidth,
OUT LPDWORD lpHeight);

Getting there...

* Thanks to this, we can already quickly fuzz-test the implementation in
a single process on Windows, without running VMware at all.
* A wrapper program for loading the DLL and calling the relevant function is

<50 LOC long.

* However, I'd really prefer to have this on Linux...

Fuzzing DLL on Linux

Why not, really?

The preferred base address is 0xX10000000, which is available in the address space.

* Relocations not required; sections must be mapped with respective access rights.

Other actions:
* Resolve necessary imports.
* Obtain the address of the exported function.

e Call it to execute the decoding.

Should work!

Resolving imports

* The Import Table may be the only troublesome part.

 WIinAPI functions not available on Linux.

 The DLL imports from ADVAPI32, KERNEL32, MSVCRT, SHELL32 and
USER32.

* C Runtime imports can be directly redirected to libc.

* All the other ones would have to be rewritten or at least stubbed-out.

KERNEL32 imports

* Three WinAPI functions used in decoding: GlobalAlloc, GlobalLock and GlobalUnlock:

void *GlobalAlloc(uint32 t uFlags, uint32 t dwBytes) attribute ((stdcall));
void *GlobalAlloc(uint32 t uFlags, uint32 t dwBytes) {
void *ret = malloc(dwBytes);
if (ret != NULL) {
memset(ret, 0, dwBytes);
}

return ret;

}

void *GloballLock(void *hMem) __ attribute__ ((stdcall));
void *GloballLock(void *hMem) {
return hMem;

}

bool GlobalUnlock(void *hMem) _ attribute__ ((stdcall));
bool GlobalUnlock(void *hMem) {
return true;

}

Missing libc imports

* Two MSVCRT-specific imports were found, which had to be

reimplemented:

long long ftol(double val) attribute_ ((cdecl));
long long ftol(double val) {
return (long long)val;

¥

double CIpow(double x, double y) _ attribute ((cdecl));
double CIpow(double x, double y) {
return pow(x, y);

¥

It works!

$./loader JPEG2000.dl1 test.jp2

[+] Successfully loaded image (9b74ba8), format:
JPEG2000 - Wavelet, width: 4, height: 4

Running the fuzzing

* An internally available JPEG2000 input file corpus was used.

* The mutation strategy was adjusted to hit the 50/50 success/failure

rate.

* Left the dumb fuzzer running for a few days, and...

* ... 186 crashes with unique stack traces were found.

Crash reproduction

e Keep in mind the crashes are still in the plugin DLL, not VMware

Workstation.

 vprintproxy.exe is very convenient to use: creates a named pipe and
reads exactly the same data that is written to COM1.

* Once again we can check testcases without starting up any actual VMs.

* PageHeap enabled for better bug detection and deduplication.

Final results

Instruction Reason

div dword [ebp-0x24] Division by zero
div dword [ebp-0x28] Division by zero
f1ld dword [edi] NULL pointer dereference
idiv ebx Division by zero
idiv edi Division by zero

mov bx, [eax] NULL pointer dereference
mov eax, [ecx] NULL pointer dereference

Instruction Reason

movq mm@, [eax] NULL pointer dereference
movq mml, [ebx] NULL pointer dereference

movq mm2, [edx] NULL pointer dereference

movzx edi, word [ecx] NULL pointer dereference

movzx esi, word [edx] NULL pointer dereference

push dword [ebp-0x8] Stack overflow (deep / infinite recursion)
push ebp Stack overflow (deep / infinite recursion)
push ebx Stack overflow (deep / infinite recursion)
push ecx Stack overflow (deep / infinite recursion)
push edi Stack overflow (deep / infinite recursion)

push esi Stack overflow (deep / infinite recursion)

Final results

* Crashes at 39 unique instructions.

* Many occurring at various points of generic functions such as memcpy(), so

not the most accurate metric.

* Quick classification: 18 low severity, 15 medium severity, 6 high severity.

* All reported to VMware on June 15.

* Fixed as part of VMSA-2016-0014 on September 13 (within 90 days).

Closing thoughts

Closing thoughts

Metafiles are complex and interesting files, certainly worth researching further.

* Supported by a variety of valid attack vectors.

They can even teach you things about the system API (i.e. the NamedEscape interface).

As usual, the older and more obscure the format/implementation — the better for the

bughunter.

Inspiration with prior work pays off again.

The right tool for the right job — manual code auditing vs fuzzing.

Thanks!

@700ru
http://j00ru.vexillium.org/

700ru.vx@egmail .com

http://twitter.com/j00ru
http://j00ru.vexillium.org/
mailto:j00ru.vx@gmail.com

