Bochspwn Reloaded

Detecting Kernel Memory Disclosure with x86 Emulation and Taint Tracking

Mateusz “jOOru” Jurczyk
Black Hat USA 2017, Las Vegas

Agenda

e User <= kernel communication pitfalls in modern operating systems

* Introduction to Bochspwn Reloaded

* Detecting kernel information disclosure with software x86 emulation
» System-specific approaches and results in Windows and Linux

* Future work and conclusions

Bio

* Project Zero @ Google
 CTF Player @ Dragon Sector

* Low-level security researcher with interest in all sorts of vulnerability

research and software exploitation.

* http://j00ru.vexillium.org/

e @{00ru

http://j00ru.vexillium.org/
http://twitter.com/j00ru

User €&~ kernel communication

OS design fundamentals

* User applications run independently of other programs / the kernel.

* Whenever they want to interact with the system, they call into the

kernel.

* Ring-3 memory is the i/o data exchange channel.

* Also registers to a small extent.

Life of a system call

User-mode Program

Shared Memory
(user-mode)

Write input data

Invoke system call

\ 4

System Kernel

-

A\ 4

Read input data

A

Syscall logic

Write output data

A

Return to user space

A

Read output data

A 4

Life of a system call

User-mode Program

Shared Memory
(user-mode)

Write input data

Invoke system call

\ 4

System Kernel

-

A 4

Read input data

A

Syscall logic

Write output data

A

Return to user space

A

Read output data

A 4

In a perfect world...

* Within the scope of a single system call, each memory unit is:
1. Read from at most once, securely.
... then ...

2. Written to at most once, securely, only with data intended for user-mode.

In reality (double fetches)

Read from at most once, securely.
e Subject of the original Bochspwn study in 2013 with Gynvael Coldwind.

* Possible violation: double (or multiple) fetches, may allow race conditions
to break code assumptions - buffer overflows, write-what-where

conditions, arbitrary reads, other badness.

e Dozens (40+) vulnerabilities reported and fixed in Windows.

* A few more just recently (CVE-2017-0058, CVE-2017-0175).

Kernel double fetches

-1254)

Patterns

-1257)

Mateu
Mateu
Mateu
Mateu
Mateu
Mateu
Mateu
Mateu
Mateu

00U
00
j00ru
00
jO0ru
jo0ru
j00ru
00

Jurczyk of Google I
Jurczyk of Google
Jurczyk of Google
Jurczyk of Google
Jurczyk of Google
Jurczyk of Google
Jurczyk of Google
Jurczyk of Google
Jurczy k of Google Inc

nc for repo
e for repo
e for repo

rting the Win32k Race Condition Wulnerability (CVE-2013-1258)
rting the Win32k Race Condition Vulnerability (CVE-2013-1259)
rtimet thie WIn2 2k Bare Cancdifion Wolnerabilibe GCWE- 201 3-1 2600

Inc for repo
Inc for repo
Inc for repo
Inc for repo
Inc for repo

Identifying and Exploiting Windows Kernel Race
Conditions via Memory Access Patterns

C fc:-r repo

rting the Win32k Race C-;:ur‘d|t|c:-n Uulnerqbllltv {CVE-2013-1268)
' Wioo s ility (CVE-2013-1267)
ility (CVE-2013-1268)
ility (CWVE-2013-12569)
ility (CVE-2013-1270)
ility (CVE-2013-1271)
ility (CWE-2013-1272)
ility (CWVE-2013-1273
ility (CVE-2013-127
ility (CVE-2013-127
127

127

.I"_-.

ility (CVE-2013-
ility (CVE-2013-

ition Vulne
ition Vulne

Bochspwn: Exploiting Kernel Race |-
Conditions Found via Memory Access

Vulnerakilit]
Vulnerabilit]
Vulnerakilit

In reality — various other problem indicators

* Unprotected accesses to user-mode pointers.

* User-mode accesses while PreviousMode=KernelMode.

* Multiple writes to a single memory area.

* Reading from a user-mode address after already having written to it.

* Accessing ring-3 memory:
* within deeply nested call stacks.

e with the first enabled exception handler very high up the call stack.

The subject of this talk

Written to at most once, securely,

only with data intended for user-mode

Writing data to ring-3

System calls

* Almost every single one on any system.

|OCTLs

* A special case of syscalls, but often have dedicated output mechanisms.

User-mode callbacks

* Specific to the graphical win32k.sys subsystem on Windows.

Exception handling

* Building exception records on the user-mode stack.

The easy problem — primitive types

NTSTATUS NtMultiplyByTwo(DWORD InputValue, LPDWORD OutputPointer) {
DWORD OutputValue;

if (InputValue !'= 0) {

OutputValue = InputValue * 2; Uninitialized if
InputValue == 0

*OutputPointer = OutputValue;
return STATUS_ SUCCESS;

The easy problem — primitive types

 Disclosure of uninitialized data via basic types can and will occur, but:
* is not a trivial bug for developers to make,
* compilers will often warn about instances of such issues,
* leaks only a limited amount of data at once (max 4 or 8 bytes on x86),
* may be detected during development or testing, since they can be functional

bugs.

* Not an inherent problem to kernel security.

The hard problem — structures and unions

typedef struct SYSCALL OUTPUT {
DWORD Sum;
DWORD Product;
DWORD Reserved;

} SYSCALL _OUTPUT, *PSYSCALL_OUTPUT;

Never initialized
because , reserved”

NTSTATUS NtArithOperations(DWORD InputValue, PSYSCALL OUTPUT OutputPointer) {
SYSCALL_OUTPUT OutputStruct;

OutputStruct.Sum = InputValue + 2;
OutputStruct.Product = InputValue * 2;

Rt1lCopyMemory (OutputPointer, &OutputStruct, sizeof(SYSCALL OUTPUT));
return STATUS_ SUCCESS;

The hard problem — structures and unions

typedef union _SYSCALL_OUTPUT {

DWORD Sum; Sum {:

QWORD LargeSum;
} SYSCALL _OUTPUT, *PSYSCALL OUTPUT ; oo

NTSTATUS NtSmallSum(DWORD InputValue, PSYSCALL_OUTPUT OutputPointer) {

SYSCALL OUTPUT OutputUnion;

OutputUnion.Sum = InputValue + 2;

3B 05 00 00

p? P22 PP ??

- LargeSum

High 32 bits
uninitialized because
never used

Rt1lCopyMemory (OutputPointer, &OutputUnion, sizeof(SYSCALL_OUTPUT));

return STATUS_SUCCESS;

The hard problem — structures and unions

Sum Padding

A

typedef struct SYSCALL_OUTPUT { -
DWORD Sum; 3B 05 00 00 | ?? ?? ?? ??

QWORD LargeSum;
} SYSCALL_OUTPUT, *PSYSCALL OUTPUT;

00 00 00 00 0O 00 @@\ 0

|

LargeSum

NTSTATUS NtSmallSum(DWORD InputValue, PSYSCALL_OUTPUT OutputPointer) {

SYSCALL_OUTPUT OutputStruct; lJnHNUaﬁzed
structure alignment

OutputStruct.Sum = InputValue + 2;
OutputStruct.LargeSum = 0;

Rt1lCopyMemory (OutputPointer, &OutputStruct, sizeof(SYSCALL OUTPUT));
return STATUS_ SUCCESS;

The hard problem — structures and unions

Structures and unions are almost always copied in memory entirely.

With many fields, it’s easy to forget to set some of them.

e or they could be uninitialized by design.

* Unions introduce holes for data types of different sizes.

* Compilers introduce padding holes to align fields in memory properly.

Compilers have little insight into structures (essentially data blobs):
* dynamically allocated from heap / pools.

* copied in memory with memcpy () etc.

The hard problem — fixed-size arrays

43 3A 5C 57 69 6E 64 6F 77 73 5C 53 79 73 74 65 6D 33 32 00 PP PP PP 2P 2P ??

PP P2 P2 PP 22 P22 P22 PP 2?2 22 P2 2P P22 2P PP 2P P22 PP PP 2?22 PP 2P 22 PP PP ??
PP PP P2 2P P2 PP PP 2P P2 P2 PP 2P P2 2P PP 2P P22 PP PP P2 P22 PP 2P 2?2 PP PP ??

PP P2 22 PP P2 P2 P22 2P 22 P22 P2 2P P22 22 PP 2P P22 PP PP 2?22 PP 2P 22 PP PP ??

NTSTATUS NtGetSystemPath(PCHAR OutputPath) { \
CHAR SystemPath[MAX PATH]| = "C:\\Windows\\System32"; Uninitialized unused
region of array

RtlCopyMemory(OutputPath, SystemPath, sizeof(SystemPath));
return STATUS_ SUCCESS;

The hard problem — fixed-size arrays

* Many instances of long fixed-size buffers used in user <> kernel data exchange.
e Paths, names, identifiers etc.

* While container size is fixed, the content length is usually variable, and most storage ends up

unused.

* Frequently part of structures, which makes it even harder to only copy the

relevant part to user-mode.

* May disclose huge continuous portions of uninitialized memory at once.

The hard problem — arbitrary request sizes

NTSTATUS NtMagicValues(LPDWORD OutputPointer, DWORD OutputLength) {
if (OutputLength < 3 * sizeof(DWORD)) {
return STATUS_BUFFER_TOO_SMALL;

EF

BE

AD

DE

FE

OF

DC

BA

LPDWORD KernelBuffer = Allocate(OutputLength);<<“””‘

KernelBuffer[0]| = ©xdeadbeef;
KernelBuffer[1l]| = @xbadceffe;
KernelBuffer[2]| = @xcafedood;

Uninitialized data in
reduntant array
entries

RtlCopyMemory(OutputPointer, KernelBuffer, OutputLength);
Free(KernelBuffer);

return STATUS_SUCCESS;

oD

DO

FE

CA

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

The hard problem — arbitrary request sizes

* Common scheme in Windows — making allocations with user-controlled size and

passing them back fully regardless of the amount of relevant data inside.

* May enable disclosure from both stack/heap in the same affected code.

* Kernel often relies on stack memory for small buffers and falls back to pools for large ones.

* Often leads to large leaks of a controlled number of bytes.

 Facilitates aligning heap allocation sizes to trigger collisions with specific objects in memory.

* Gives significantly more power to the attacker in comparison to other bugs.

Extra factors: no automatic initialization

* Neither Windows nor Linux pre-initialize allocations (stack or heap) by
default.

* Exceptions from the rule mostly found in Linux: kzalloc(), GFP_ZERO,
PAX_MEMORY_STACKLEAK etc.

» Buffered IOCTL I/O buffer is now always cleared in Windows since June 2017 (new!)

* Resulting regions have old, leftover garbage bytes set by their last user.

* From MSDN:

Note Memory that ExAllocatePoolWithTag allocates is uninitialized. A kernel-mode driver must first zero this memory if it is going to make it visible to user-

mode software (to avoid leaking potentially privileged contents).

Extra factors: no visible consequences

* C/C++ don’t make it easy to copy data securely between different
security domains, but there’s also hardly any punishment.
* If the kernel discloses a few uninitialized bytes here and there, nothing will
crash and likely no one will ever know (until now ©).
* If a kernel developer is not aware of the bug class and not actively

trying to prevent it, they’ll probably never find out by accident.

Extra factors: leaks hidden behind system AP

User-mode Program User-Mode System API System Kernel

H Call API function

Convert arguments and invoke syscall

Syscall logic

Write output with leaks and return

&
<«

‘, Extract
~— meaningful data

Disclosed
memory lost
here

Return the specific requested values ‘ ‘

i

Severity and considerations

e Just” local info leaks, no memory corruption or remote exploitation

involved by nature.
* Actual severity depends on what we manage to leak out of the kernel.

* On the upside, most disclosures are silent / transparent, so we can
trigger the bugs indefinitely without ever worrying about system

stability.

Severity and considerations

* Mostly useful as a single link in a LPE exploit chain.
* Especially with the amount of effort put into KASLR and protecting information about
the kernel address space.
* One real-life example is a Windows kernel exploit found in the
HackingTeam dump in July 2015 (CVE-2015-2433, MS15-080).

* Pool memory disclosure leaking base address of win32k.sys.

* Independently discovered by Matt Tait at PO, Issue #480.

Kernel-mode ASLR leak via uninitialized memory returned to usermode by NtGdiGetTextMetrics

Reported by matttait@google.com, Jul 10 2015

https://bugs.chromium.org/p/project-zero/issues/detail?id=480

Stack disclosure benefits

* Consistent, immediately useful values, but with limited variety and
potential to leak anything else:
» Addresses of kernel stack, heap (pools), and executable images.
» /GS stack cookies.
 Syscall-specific data used by services previously invoked in the same thread.

» Potentially data of interrupt handlers, if they so happen to trigger in the

context of the exploit thread.

Heap disclosure benefits

* Less obvious memory, but with more potential to collide with
miscellaneous sensitive information:

» Addresses of heap, potentially executable images.

* Possibly data of any active kernel module (disk, network, video, peripheral
drivers).

* Depending on heap type, allocation size and system activity.

Prior work (Windows)

PO Issue #480 (win32k!NtGdiGetTextMetrics, CVE-2015-2433), Matt Tait, July 2015

Leaking Windows Kernel Pointers, Wandering Glitch, RuxCon, October 2016

* Eight kernel uninitialized memory disclosure bugs fixed in 2015.

Win32k Dark Composition: Attacking the Shadow Part of Graphic Subsystem,
Peng Qiu and SheFang Zhong, CanSecWest, March 2017

* Hints about multiple infoleaks in win32k.sys user-mode callbacks, no specific details.

Automatically Discovering Windows Kernel Information Leak Vulnerabilities,
fanxiaocao and pjf of IceSword Lab (Qihoo 360), June 2017

Prior work (Linux)

* |n 2010, Dan Rosenberg went on a rampage and killed 20+ info leaks in various
subsystems.
* Some of the work mentioned in Stackjacking and Other Kernel Nonsense, presented by Dan
Rosenberg and Jon Oberheide in 2011.
* A number of patches submitted throughout the years by various researchers:
Salva Peiro, Clément Lecigne, Marcel Holtmann, Kees Cook, Jeff Mahoney, to

name a few.

* The problem seems to be known and well understood in Linux.

Bochspwn Reloaded design

hochs

e Bochs is a full IA-32 and AMD64 PC emulator.

* CPU plus all basic peripherals, i.e. a whole emulated computer.

e Written in C++.

e Supports all latest CPUs and their advanced features.

* SSE, SSE2, SSE3, SSSE3, SSE4, AVX, AVX2, AVX512, SVM / VT-x etc.
* Correctly hosts all common operating systems.

* Provides an extensive instrumentation API.

Performance (short story)

A IIIE—E_— ..
[P5 s8.010M ML

P E————

Performance (long story)

* On a modern PC, non-instrumented guests run at up to 80-100M IPS.

 Sufficient to boot up a system in reasonable time (<5 minutes).

* Environment fairly responsive, at between 1-5 frames per second.

* Instrumentation incurs a severe overhead.

e Performance can drop to 30-40M IPS.

* still acceptable for research purposes.

* Simple logic and optimal implementation is the key to success.

Bochs instrumentation support

* Instrumentation written in the form of callback functions plugged into Bochs through

BX_INSTR macros, statically built into bochs.exe.

* Rich variety of event callbacks:

* init, shutdown, before/after instruction, linear/physical memory access, exception, interrupt, ...

* Enables developing virtually any logic to examine or steer the whole operating system

execution.

* counting statistics, tracing instructions or memory accesses, adding metadata, altering instruction

behavior, adding new instructions, ...

BX_INSTR_INIT_ENV
BX_INSTR_EXIT_ENV

BX INSTR INITIALIZE

BX_INSTR EXIT

BX_INSTR_RESET

BX_INSTR_HLT

BX_INSTR_MWAIT
BX_INSTR_DEBUG_PROMPT
BX_INSTR_DEBUG_CMD
BX_INSTR_CNEAR_BRANCH_TAKEN
BX_INSTR_CNEAR_BRANCH_NOT_ TAKEN
BX_INSTR_UCNEAR_BRANCH
BX_INSTR_FAR_BRANCH
BX_INSTR_OPCODE
BX_INSTR_EXCEPTION
BX_INSTR_INTERRUPT

Bochs instrumentation callbacks

BX_INSTR_HWINTERRUPT
BX_INSTR_CLFLUSH
BX_INSTR_CACHE_CNTRL
BX_INSTR_TLB_CNTRL
BX_INSTR_PREFETCH_HINT
BX_INSTR BEFORE EXECUTION

BX INSTR AFTER EXECUTION

BX_INSTR_REPEAT_ITERATION
BX INSTR LIN ACCESS

BX_INSTR_PHY_ ACCESS
BX_INSTR_INP
BX_INSTR_INP2
BX_INSTR_OUTP
BX_INSTR_WRMSR
BX_INSTR_VMEXIT

Core logic

* Taint tracking for the entire kernel address space.

* Required functionality:
1. Set taint on new allocations (stack and heap).
2. Remove taint on free (heap-only).
3. Propagate taint in memory.

4. Detect copying of tainted memory to user-mode.

Ancillary functionality

* Keep track of loaded guest kernel modules.
* Read stack traces on error to deduplicate bugs.
* Symbolize callstacks to prettify reports.

* Break into kernel debugger (attached to guest) on error.

Shadow memory representation

|||||||||||||||||||||| -
1
1
[("] I
© (oT1] I
M _m c 1
m | 4 A I
S v U N I
o N)] T R | I
[o © (1] [1
- © nw QO o+ (o] I
(@) Q | I I |
wn 2 U VU U U |
()] c (o] o (@] (o] 1
o B I = (R S R e] I
C r~ =~ ~ I
= ¥ © © ®© ®© I
m N N N I
m m ™M m i
> —~ £ P P P i
e O © c© ¢ c I
e O A A A - I
= 89 S5 S5 5 S I
O 1
M [) [) [) [) [) “
|||||| 4|I|I|I|I|I|I|JFL
\ 4
/
/ \\
/ \\
\ ’
\ ’
\ /
\ ’
\ /
\ ’
\ ’
\ Vi
\ Vi
lllllllllll M - R N BN NN SN SN BN SN M BN NN AN S A
I : .W d
\ / 1
\ 4 —
> 0 - I
o o !
= E o “
Q Q © I
£ € 3T !
1
) 2 9 I
< o) I
v - £ I
- - |
(@) v I
(@) I
o) | = 1
IIIII _IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII\1\II_
1 e
1 \\
1 7
1 \\
1 \\
1 7
1 \\
1 \\
1 7’
1 \\
" L7
1 \\
||||| R A ——
I > I
1
1
1
> 5 _
1
(@) c o) -
- © S I
()] _ = 1
& <) a I
1
% m 2 1
Q) I
+— < 1
wn 1
Q I
> 1
O [

Shadow memory representation

* Linear in relation to the size of the guest kernel address space.

* Only 32-bit guests supported at the moment.

* Some information stored at 1-byte granularity, some at 8-byte granularity.

 Stores extra metadata useful for bug reports in addition to taint.

* Max shadow memory consumption:
* Windows (2 GB kernel space) — 6 GB
* Linux (1 GB kernel space) —3 GB

e Easily managable with sufficient RAM on the host.

Double-tainting

* Every time a region is tainted, corresponding guest memory is also
padded with a special marker byte.

* OXAA for heap and OxBB for stack areas.

* May trigger use-of-uninit-memory bugs other than just info leaks.
* Provides evidence that a bug indicated by shadow memory is real.

* Eliminates all false-positives, guarantees ~100% true-positive ratio.

Setting taint on stack

* Cross-platform, universal.

* Detect instructions modifying the ESP register:

ADD ESP, ... SUB ESP, ... AND ESP,
* After execution, if ESP decreased, call:

set_taint(ESP,,4, ESP

new)

* Relies on the guest behaving properly, but both Windows and Linux do.

Setting taint on heap/pools (simplified)

* Very system specific.

* Requires knowledge of both the allocated address and request (size,

tag, flags, origin etc.) at the same time.

 Then:

set _taint(address, address + size)

Removing taint on heap free

* Break on free() function prologue.
* Look up allocation size from shadow memory.

* Clear all taint and metadata for the whole region.

* Alternatively: re-taint to detect UAF and leaks of freed memory.

Taint propagation

* The hard part — detecting data transfers.

* Bochspwn only propagates taint for <REP> MOVS{B,D} instructions.

* Typically used by memcpy () and its inlined versions across drivers.
* Both source (ESI) and destination (EDI) addresses conveniently known at the same time.

* We mostly care about copies of large memory blobs, anyway.

» Best effort approach

* Moving taint across registers would require instrumenting dozens or hundreds of instructions

instead of one, incurring a very significant CPU overhead for arguably little benefit.

Taint propagation

* If a memory access is not a result of <REP> MOVS{B,D}:

* On write, clear the taint on the memory area (mark initialized).

* On read, check taint. If shadow memory indicates uninitialized read, verify it
with guest memory.

* In case of mismatch (byte is not equal to the marker for whatever reason), clear taint.

* Ifit’s a real uninitialized read, we may report it as a bug if running in ,,strict mode”.

Bug detection

* Activated on <REP> MOVS{B,D} when ESI is in kernel-mode and EDI
IS in user-mode.

* Copying an output data blob to user land.

* If there is any tainted byte in the source memory region, report a bug.

Let’s run it against some real systems

Bochspwn vs. Windows

(Un)tainting pool allocations

* A number of pool allocation routines in the kernel:

« ExAllocatePool, ExAllocatePoolEx, ExAllocatePoolWithTag,
ExAllocatePoolWithQuotaTag, ExAllocatePoolWithTagPriority

All eventually call into one: ExAllocatePoolWithTag.

STDCALL calling convention: arguments on stack, return value in EAX.

* Both request (origin, size, tag) and output (allocated address) available at the same time.

Similar for untaining freed regions.

Extremely convenient for instrumentation.

ExAllocatePoolWithQuotaTag

ExAllocatePoolWithPriority

ExAllocatePoolEx

.%‘
ExAllocatePool

ExAllocatePoolWithTag ’

-
-
-
-
-
-
-

e E

loc S523AAC:

-
-
-

e

EAX
[ESP]
[ESP+4]
[ESP+8]

-

pop
pop
pop
mou

edi
esi
ebx
esp,

allocated address
allocation origin
requested size

allocation tag

eb

AllocatePoolWithTag(x, =, x) endp

[ESP+4]

freed region

ol sl =

; Exported entry 229. ExFreePoolWithTag

; Attributes: bp-based frame

; void _ stdcall ExFreePoolWithTag(PVDID P, ULDHG Tagq)
public stdcall ExFreePoolWithTag{x, x)

__stdcall ExFreePoolWithTag{z, =) proc near

var_48= dword ptr -48h
var_44= dword ptr -44h
var_48= dword ptr -48h
var_3C= dword ptr -3Ch
var_38= dword ptr -38h
var_34= dword ptr -34h
var_38= dword ptr -38h
var_2C= dword ptr -2Ch
var_28= dword ptr -22h
var_24= dword ptr -Zih
var_28= dword ptr -Z8h
var_1C= dword ptr —1Ch
var_18= dword ptr -18h
var_14= dword ptr —-14h
var_18= dword ptr -18h
LockHandle= KLOCK (QUEUE_HAHDLE ptr -8BCh
P= dword ptr 8

Ta

mov ebp, esp

and esp, BFFFFFFF8h

moy eax, ExpSpecialfllocations
sub esp, A4Ch

push ehx

push esi

mou esi, [ebp+P]

push edi

test Pdx, eax

jz loc 523B95

e

O

oy
ExFreePool ExFreePoolEx
;‘
u
ExFreePoolWithTag

Optimized, specialized allocators

e win32k!AllocFreeTmpBuffer first tries to return a cached memory region

(win32k!gpTmpGlobalFree) for allocations of < 4096 bytes.

* Called from ~55 locations, many syscall handlers.

* Can be easily patched out to always use the system allocator.

PUDID stdcall AllocFreeTmpBuffer{unsigned int ai)

4
PUDID result; 7/

= AllocThreadBufferWithTag{ai, 'pmTG'};
Feturn -

}

if > Bz1888 || (= InterlockedExchange{gpTmpGlobalFree, B8}})

8)

Propagating taint and detecting bugs

* The standalone memcpy() function in drivers is implemented mostly as
rep movs.

 Still some optimizations left which transfer data through registers.

* All instances of memcpy () have the same signature —they can be patched to only use

rep movs on disk or at run time in kernel debugger.

* Inlined memory copy is typically also compiled to rep movs.

* As a result, tracking most transfers of large data blobs works with Bochspwn’s

universal approach.

Windows 7 memory taint layout

0x80000000

OXFFFFEFFf

B stack pages [] pool pages 40 minutes of run time, 20s. interval, boot + initial ReactOS tests

Windows 10 memory taint layout

OX380000000 T

e e et

Bt M = TR e e——————— e —
e e

)6 N W e
B stack pages

] pool pages

120 minutes of run time, 60s. interval, boot + initial ReactOS tests

Keeping track of processes/threads

e Simple traversal of a kernel
ETHREAD EPROCESS

Iinked'“St in gueSt Virtual KTHREAD

memory.

* Unchanged since original

Bochspwn from 2013.

Keeping track of loaded kernel modules

e Simple traversal of a kernel
linked-list in guest virtual

memory.

* Unchanged since original

Bochspwn from 2013.

Bochspwn report

{ explorer.exe}

READ of 94447de4 (4 bytes, kernel--->user), pc = 902df3ef

[Pool allocation not recognized]

Allocation origin: 0x90334988 ((000c4988) win32k.sys! SEH prolog4+00000018)

Shadow bytes: 00 ff ff ff Guest bytes: 00 bb bb bb

Kernel debugger support

* Textual Bochspwn reports are quite verbose, but not always sufficient to
reproduce bugs.
 Especially for IOCTL / other complex cases, where function arguments need to be
deeply inspected, kernel objects examined etc.
 Solution — attach WinDbg to the emulated guest kernel!

* Easily configured, Bochs has support for redirecting COM ports to Windows pipes.

* Of course slow, as everything working on top of Bochs, but workable. ©

Breaking on bugs

e Attached debugger is not of much use if we can’t debug the system at

the very moment of the infoleak.

* Hence: after the bug is logged to file, Bochspwn injects an INT3
exception in the emulator.

* WinDbg stops directly after the offending rep movs instruction.

 Overall feels quite magical. ©

) Kernel 'com:pipe, port=\\.\pipe\bochs_win7,resets=0,reconnect - WinDbg:6.3.9600.17200 X86

=RECl X

File

u

| & |

Edit View Debug Window Help

[EBlg=H=me e (0D EOEOEEOSE|[EE] A

B Bochs for Windows - Display

Copy Pogte

Resed SUSPEND FoRer

nt | DbgBreakPointWithStatus:
828c29d4 8hb442404 oW sax.dvord ptr [esp+i]
sakWithStatuslnstruction:

828c29d9 c20400

ret 4
nt | DbglUzerBreakPoint ;
828c2%dc cc int 3
828c29dd 90 nop
828c2%9de o3 ret
828c29df 90 nop
nt | DbgBreakPoint :
A?RR29=20 int K]

Command - Kernel 'corm:pipe port="\\pipe\bochs_win7 resets=0,reconnect’ - WinDbg:6.3.9600.17200 X86

*# If wou did not intend to brealk into the debugger. press the "g" key. then *
* press the "Enter” key now. Thisz message might immediately reappear. If it =
* doss, press "g" and "Enter" again. *
* *

nt |EtlpBreakWithStatuslnstruction:
828c29d8 cc int 3
kd: db esp

I System protection

Service Pack 1
Advanced system settings

Copyright & 2002 Microsoft Corporation, Al rights reserved.

_ - |ﬁl| x
Disassembly = =
Offset: @%scopeip Previous Nead Lﬂ ~ Control Panel ~ All Control Panel Ttems ~ System W m I Search Control Panel @‘
828c29c7 7407 je nt | KdCheckForDebugBreak+0=22 (828cz29d0) ,@, “
828c29%c9 6all push 1 Contral Panel H . L . i —
82Bc29ch =804000000 call nt)DhgBreakPointVithStatus (828c29d4) onireFans Home View basic information about your computer
828c29d0 =3 ret)) .
828z2541 90 nop J Device Manager Wiindows edition
g28c29d2 90 nop .))
82802943 90 e | Remote settings windows 7 Ultimate

System
Rating:
Processaor:
Installed memory (RAM):
System bype:
Pen and Touch:

Compuker narme, domain, and workgroup settings

Syshem rating is not available

Intel(R) CorefTMI2 Duo CPU T9500 @ 2.80GHz 50 MHz
2,00 GE

32-bit Operating Syskem

Mo Pen ar Tauch Input is available far this Display

Bcdacc94 d0 29 8c 82 01 00 00 00-a2 29 8c 82 00 00 00 OO .9....... oo) R o)
Bodacoad 00 00 00 00 5a 62 02 00-bb bb bb bb 2f 14 0% 00 zho i, See also Computer name; win?-32-bochs fChange ssttings
8cdacchd 01 14 03 00 34 od 4a 8c-00 00 00 00 88 16 2d EB7 4.1 .. Ackion Cent Full computer name: win7-32-bochs
fcdacecd 07 00 00 00 20 od 4a 8c-30 28 8c 82 9f &0 82 00 J.0¢. cHon Lenter o
fcdacedd 6d 3a 3f 4a 00 00 00 00-00 00 00 00 Sa 62 02 00 m:7?7........ Zh Windows Update Computer description: |
Bcdacced 20 4e 97 82 bb bb bbh bb-34 od 4a 8c 01 00 01 00 H... ... 4.3,) W : WORKGROLP
Scdacci4 bb bb bb bb 00 00 00 00-01 00 01 00 bb bb bb bh 3 Perfarmance Infarmation and rkgroup: [
Bcdacdl4 00 00 00 00 bb bb Bb bb-bb bb bb bb Bb bb Bb BB L Toals]]

- windaws activation LI
4 | i | 3 ~

= == [Lg'— 8:19 &M
kd> | ﬁgtart| \9 ‘_,:_mJ O . || |‘ o oy elgz017 B
Ln0, ColD Sys0:KdSn:S Proc000:0 Thrd000:0 ASM OWR CAPS NUM CTRL + 3rd button enables mouse IP5: 30.375M NUM | CAPS SCRL |4D:0-M EL000

Testing performed

* |Instrumentation run on both Windows 7 and 10.

* Executed actions:
e System boot up.

» Starting a few default apps — Internet Explorer, Wordpad, Registry Editor, Control Panel,
games etc.

* Generating some network traffic.

* Running ~800 ReactOS unit tests (largely improved since 2013).

» Kernel code coverage still a major roadblock for effective usage of full-system

instrumentation.

Results!

Windows Kernel Information Disclosure Vulnerability
Windows Kernel Information Disclosure Vulnerability
Windows Kernel Information Disclosure Vulnerability
Windows Kernel Information Disclosure Vulnerability

Windows Kernel Information Disclosure Vulnerability

Windows Kernel Information Disclosure Vulnerability
Win32k Infarmation Disclosure Vulnerability

Windows Kernel Information Disclosure Vulnerability

Windows Kernel Information Disclosure Vulnerability
Windows Kernel Information Disclosure Vulnerability
Windows Kernel Information Disclosure Vulnerability
Windows Kernel Informaticn Disclosure Vulnerability

Windows Kernel Information Disclosure Vulnerability

CVE-2017-8478

CVE-2017-8479

CVE-2017-8480

CVE-2017-8481

CVE-2017-8482

CVE-2017-8483

CVE-2017-3484

CVE-2017-8435

CVE-2017-8488

CVE-2017-8489

CVE-2017-8490

CVE-2017-8491

CVE-2017-8492

Mateusz Jurczyk of Google Project Zero
Mateusz Jurczyk of Google Project Zero
Mateusz Jurczyk of Google Project Zero
Mateusz Jurczyk of Google Project Zero

» fanxiaocao and pjf of lceSword Lab , Qihoo 360
s Mateusz Jurczyk of Google Project Zero

Mateusz Jurczyk of Google Project Zero
Mateusz Jurczyk of Google Project Zero

» fanwiaocao and pjf of IceSword Lab , Qihoo 360
s Mateusz Jurczyk of Google Project Zero

Windows Kernel Information Disclosure Vulnerability
Windows Kernel Information Disclesure Vulnerability
Win32k Information Disclosure Vulnerability

Windows Kernel Information Disclosure Vulnerability

Windows Kernel Information Disclosure Vulnerability

CVE-2017-0173

CVE-2017-0220

CVE-2017-0245

CVE-2017-0258

CVE-2017-0259

Windows Kernel Information Disclosure Vulnerability

CVE-2017-0167

Windows Kernel Information Disclosure Vulnerability
Windows Kernel Information Disclosure Vulnerability
Windows Kernel Information Disclosure Vulnerability
Windows Kernel Information Disclosure Vulnerability

Win32k Information Disclosure Vulnerability

Win32k Information Disclosure Vulnerability
Win32k Information Disclosure Vulnerability
Win32k Information Disclosure Vulnerability

Windows Kernel Information Disclosure Vulnerability

Win32k Information Disclosure Vulnerability

Windows Kernel Information Disclosure Vulnerability

Win32k Information Disclosure Vulnerability

CVE-2017-0299

CVE-2017-0300

CVE-2017-8462

CVE-2017-8469

CVE-2017-8470

CVE-2017-8471

CVE-2017-8472

CVE-2017-8473

CVE-2017-8474

CVE-2017-8475

CVE-2017-8476

CVE-2017-8477

Mateusz Jurczyk of Google Project Zero
Mateusz Jurczyk of Google Project Zero
Mateusz Jurczyk of Google Preject Zero
Mateusz Jurczyk of Google Project Zero

» fanxiaocao and pjf of IceSword Lab, Qihoo 360
* Mateusz Jurczyk of Google Project Zero

Mateusz Jurczyk of Google Project Zero
Mateusz Jurczyk of Google Project Zero
Mateusz Jurczyk of Google Project Zero

» fanxiaccao and pjf of IceSword Lab , Qihoo 360
» Mateusz Jurczyk of Google Project Zero

Mateusz Jurczyk of Google Project Zero

» fanxiaoccao and pjf of IceSword Lab , Qihoo 360
» Mateusz Jurczyk of Google Project Zero

Mateusz Jurczyk of Google Project Zero

Windows Kernel Information Disclosure Vulnerability

CVE-2017-8564

Mateusz Jurczyk of Google Project Zero

Summary of the results so far

* A total of 30 vulnerabilities fixed by Microsoft in the last months

(mostly June).

Information disclosure by memory type

Pools

Summary — pool disclosures

Issue # Component Fixed in Root cause Number of leaked bytes
1144 CVE-2017-8484 win32kINtGdiGetOutlineTextMetricsinternalW June 2017 Structure alignment 5
1145 CVE-2017-0258 nt!SeplnitSystemDacls May 2017 Structure size miscalculation 8
1147 CVE-2017-8487 \Device\KsecDD, IOCTL 0x390400 June 2017 Unicode string alignment 6
1150 CVE-2017-8488 Mountmgr, IOCTL_MOUNTMGR_QUERY_POINTS June 2017 Structure alignment 14
1152 CVE-2017-8489 WMIDataDevice, IOCTL 0x224000 (WmiQueryAllData) June 2017 Structure alignment, 72

Uninitialized fields

Fixed-size string buffers,

1153 CVE-2017-8490 win32k!NtGdiEnumFonts June 2017 Structure alignment, 6672

Uninitialized fields
1154 CVE-2017-8491 Volmgr, IOCTL_VOLUME_GET_VOLUME_DISK_EXTENTS June 2017 Structure alignment 8
1156 CVE-2017-8492 Partmgr, IOCTL_DISK_GET_DRIVE_GEOMETRY_EX June 2017 Structure alignment 4
1159 CVE-2017-8469 Partmgr, IOCTL_DISK_GET_DRIVE_LAYOUT EX June 2017 _ Structure alignment, 484

Different-size union overlap

1161 CVE-2017-0259 nt!NtTraceControl (EtwpSetProviderTraits) May 2017 ? 60
1166 CVE-2017-8462 nt!NtQueryVolumelnformationFile (FileFsVolumelnformation) June 2017 Structure alignment 1
1169 CVE-2017-0299 nt!NtNotifyChangeDirectoryFile June 2017 Unicode string alignment 2
1238 CVE-2017-8564 Nsiproxy/netio, IOCTL 0x120007 (NsiGetParameter) July 2017 Structure alignment 13

Summary — stack disclosures

Component

Root cause

Number of leaked bytes

1177 CVE-2017-8482 nt!KiDispatchException June 2017 Uninitialized fields 32
1178 CVE-2017-8470 win32k!NtGdiExtGetObjectW June 2017 Fixed-size string buffer 50
1179 CVE-2017-8471 win32k!NtGdiGetOutlineTextMetricsinternalW June 2017 Uninitialized field 4
1180 CVE-2017-8472 win32kINtGdiGetTextMetricsW June 2017 St(;:ﬁ::{.;?zlf d”;‘i“jgt' 7
1181 CVE-2017-8473 win32k!NtGdiGetRealizationInfo June 2017 Uninitialized fields 8
1182 CVE-2017-0245 win32k!xxxClientLpkDrawTextEx May 2017 ? 4
1183 CVE-2017-8474 DeviceApi (PL?SESS:;?S;ET:::LZ:;23::2?“”"0‘3“‘3' June 2017 Uninitialized fields 8
1186 CVE-2017-8475 win32k!ClientPrinterThunk June 2017 ? 20
1189 CVE-2017-8485 nt!NtQueryInfog:::gg;i:ani)ilzljsfcér(:qziiigl.r:;nitlnformation, June 2017 Structure alignment 8
1190 CVE-2017-8476 nt!NtQuerylnformationProcess (ProcessVmCounters) June 2017 Structure alignment 4
1191 CVE-2017-8477 win32k!NtGdiMakeFontDir June 2017 Uninitialized fields 104
1192 CVE-2017-0167 win32kfull!SFnINLPUAHDRAWMENUITEM April 2017 ? 20
1193 CVE-2017-8478 nt!NtQueryInformationJobObject (information class 12) June 2017 ? 4
1194 CVE-2017-8479 nt!NtQuerylnformationJobObject (information class 28) June 2017 ? 16
1196 CVE-2017-8480 nt!NtQuerylnformationTransaction (information class 1) June 2017 ? 6
1207 CVE-2017-8481 nt!NtQuerylnformationResourceManager (information class 0) June 2017 ? 2
1214 CVE-2017-0300 nt!NtQuerylnformationWorkerFactory (WorkerFactoryBasiclnformation) June 2017 ? 5

Pool infoleak reproduction

* Use a regular VM with guest Windows.

* Find out which driver makes the allocation leaked to user-mode

(e.g. win32k.sys).
* Enable Special Pools for that module, reboot.

 Start PoC twice, observe a repeated marker byte where data is leaked

(changes between runs).

D:\>VolumeDiskExtents.exe

000YYYVO: 01 VO 00 Vo 39 39 39 39
00008 : VO VO 00 VO 39 39 39 39
0000VV10: VO VO 50 V6 B0 VO 0O 0O ..

P00PPR18: 00 00 aod S B9 0O 00 00

D:\>VolumeDiskExtents.exe

00000000 :
00000008 :
00000010
00000018 :

01 00 00 00 2f 2f 2f 2f
00 00 00 00 2f 2f 2f 2f
00 00 50 06 VO 0O 0O 00 ..

00 00 a@ 9 09 00 0O 0O

Stack infoleak reproduction

* More difficult, there is no official / documented way of padding stack allocations

with marker bytes.

* In a typical scenario, it may not be obvious that/which specific bytes are leaked.

* Non-volatile, non-interesting values (e.g. zeros) often occupy a large portion of the stack.

 Observations could differ in Microsoft’s test environment.

* Reliable proof of concept programs are highly desired.
* To fully ensure that a bug is real also outside of Bochspwn environment.

* To make the vendor’s life easier with analysis.

Stack spraying to the rescue

* A number of primitives exist in the Windows kernel to fill the kernel stack
with controlled data.

|”

* Thanks to optimizations — local buffers used for ,small” requests in many syscalls.

e Easy to identify: look for Nt* functions with large stack frames in IDA.

* My favorite: nt!NtMapUserPhysicalPages
e Sprays up to 4096 bytes on x86 and 8192 bytes on x86-64.

 Documented in ,nt!NtMapUserPhysicalPages and Kernel Stack-Spraying Techniques”
blog post in 2011.

1. Spray the kernel stack with
an easily recognizable pattern.

41
41
41
41
41
41
41
41
41
41
41
41

41
41
41
41
41
41
41
41
41
41
41
41

41
41
41
41
41
41
41
41
41
41
41
41

41
41
41
41
41
41
41
41
41
41
41
41

41
41
41
41
41
41
41
41
41
41
41
41

41
41
41
41
41
41
41
41
41
41
41
41

2.

Trigger the bug directly after, and observe the marker bytes at

uninitialized offsets.

00

50

A8

00

41

41

41

41

9B

01

00

00

00
00
30

00
00
OA

19
98
00

00
44
00

48
00
00

45
00
05

41
41

41
41

41
41

41
41

00

00

00

00

D:\>NtGdiGetRealizationInfo.exe

00OLYORY: 10 VO VO O B3 01 Y O
PPV 8: 2e 0O PO PO 69 0O 00 461..F
00000010: 41 41 41 41 41 41 41 41 AAAAAAAA

Quick digression: bugs without Bochspwn

* If memory marking can be used for bug demonstration, it can be used for

discovery too.

e Basic idea:

* Enable Special Pools for all common kernel modules.

* Invoke tested system call twice, pre-spraying the kernel stack with a different byte

each time.

 Compare output in search of repeated patterns of differing bytes at common offsets.

Perfect candidate: NtQuerylnformation™

NTSTATUS
Manually created]
NTAPI
NtQueryInformationProcess (HriE el 0,250]
IN HANDLE ProcessHandl€,

IN PROCESSINFOCLASS ProcessInformationClass,
OUT PVOID ProcessInformation,

IN ULONG ProcessInformationLength

OUT PULONG ReturnLength OPTIONAL

);

Brute-forced 1..255]

NtCéueryInformationAtom

NtQueryInformationEnlistment

NtQueryInformationFile

NtQueryInformationJobObject

NtQueryInformationPort

NtQueryInformationProcess

NtQueryInformationResourceManager

NtQueryInformationThread

NtQueryInformationToken

NtQueryInformationTransaction

NtQueryInformationTransactionManager

NtQueryInformationWorkerFactory

Fruitful idea

Windows Kernel stack memory disclosure in nt!NtQuerylnformationJobObject (information class 12)

Reported by mjurczvk@google.com, Mar 17

Windows Kernel stack memory disclosure in ntINtQuerylnformationJobObject (information class 28)

Reported by mjurczvk@google.com, Mar 17

Windows Kernel stack memory disclosure in nt!NtQuerylnformationTransaction (information class 1)

Reported by mjurczyk@google.com, Mar 17

Windows Kernel stack memory disclosure in nt!NtQueryinformationResourceManager (information class 0)

Reported by mjurczvk@google.com, Mar 20

Windows Kernel stack memory disclosure in nt!NtQuerylnformationWorkerFactory (WorkerFactoryBasiclnformation)

Reported by mjurczyk@google.com, Mar 21

Windows infoleak summary

* The problem seems to have remained almost completely
unrecognized until just now (with a few exceptions).

* The invisibility and non-obviousness of this bug class and no notion of

privilege separation in C/C++ doesn’t really help.

* |t’s a fundamental issue, trivial to overlook but very difficult to get right in the

code.

Windows infoleak summary

* Windows has a very loose approach to kernel-user data transfers.

* Tip of the iceberg, there may be many more instances of the bug
lurking in the codebase.

e Hundreds of memcpy () calls to user-mode exist, every one of them is a

potential disclosure.

* Especially those where size is user-controlled, but the amount of relevant

data is fixed or otherwise limited.

Mitigation ideas (generic)

* Fully bug-proof: memset all stack and pool allocations when they are
made/requested.

* Would pretty much make the problem go away without any actual bug-fixing.
* Easily implemented, but the overhead is probably too large?

* Most kernel allocations don’t end up copied to user-mode, anyway.

That was fast!

Joseph Bialek ' S

@JosephBialek ranee M
Anyone notice my change to the Windows |0
Manager to generically kill a class of info

disclosure? BufferedlO output buffer is
always zero'd.

10645 DODARNAL" 4839329c 452be5 sub r12d,r13d

10046 D0ODODOL"4039329F 458bcd nov r8d,r12d // r8d = OutputBufferlength - InputBufferlength
18846 PPBBBRB1 48393242 £18bed nov ecx,r13d f/ ecx = InputBufferlength

10845 DOODONAT" 40393235 4803418 add rcx,qword ptr [rsi+l18h)] // rcx = SystemBuffersInputBufferlength
10046 DDOOODOL" 40393239 33d2 xor edx,edx

18846 DBBBBBB1 483932ab eSeBfdcdff call ntoskrnlinepsel (08080661 48673898)

Retweets Likes

12 8 NS LO00®

8:59 PM - 15 Jun 2017

Mitigation ideas (generic)

* More realistic:

 Clear the kernel stack post-syscall (a.k.a. PAX_MEMORY_STACKLEAK).

* Prevents cross-syscall leaks, which are probably the majority.

* Add a new allocator function clearing returned memory regions.

* Detect which allocations end up copied to user-mode and clear only those

(automatically or by adding memset () calls in code manually).

Mitigation ideas (bug-specific)

 With Windows source code, Microsoft could take the whole
Bochspwn idea to the next level:

e Adding instrumentation at compile time - access to much more semantic

information, e.g. better taint propagation (full vs. just memcpy).
* More code coverage - more bugs found.

 Static analysis easier to use to guide dynamic approaches and vice versa.

Closing remarks

* The Bochspwn approach can be also used to detect regular use of
uninitialized memory, but the results are much harder to triage:

* LOTS of false positives.

* Lack of source code makes it very difficult to determine if an access is a bug

and what its impact is.

 Leaking specific sensitive data from pool disclosures seems like an

interesting subject and still needs research. ©

Bochspwn vs. Linux

Tainting heap allocations

* MUCH more complex than on Windows:

* A number of allocators, public and internal, with many variants: kmalloc, vmalloc,

kmem_cache_alloc.
e Allocator functions have different declarations.

* Passing arguments via registers (regparm=3) means request information is not available on RET

instruction.
 kmem_cache’s have allocation sizes specified during cache creation.

* kmem_cache’s may have constructors (tainting at a different time then returning region to caller).

* Allocators may return pointers < 0x10 (not just NULL).

Variety of allocators (kmalloc/kmem cache)

void *kmalloc(size t, gfp t);

void * kmalloc(size t, gfp t);

void *kmalloc order(size t, gfp t, unsigned int);

void *kmalloc order_trace(size t, gfp _t, unsigned int);

void *kmalloc large(size t, gfp t);

void *kzalloc(size t, gfp t);

struct kmem cache *kmem cache create(const char *, size t, size t,
unsigned long, void (*)(void *));

void *kmem_cache_alloc(struct kmem_cache *, gfp_t);

void *kmem cache _alloc_ trace(struct kmem cache *, gfp t, size t);

Variety of allocators (vmalloc)

void *vmalloc(unsigned long);

void *vzalloc(unsigned long);

void *vmalloc user(unsigned long);

void *vmalloc_node(unsigned long, int);

void *vzalloc node(unsigned long, int);

void *vmalloc exec(unsigned long);

void *vmalloc 32(unsigned long);

void *vmalloc 32 user(unsigned long);

void * wvmalloc(unsigned long, gfp _t, pgprot t);

void * vmalloc_node range(unsigned long, unsigned long, unsigned long, unsigned long, gfp t,

pgprot_t, unsigned long, int, const void *);

Variety of allocators

e Of course many of them call into each other, but in the end, we still had to hook into:

« kmalloc

kmalloc order

__kmalloc track caller

__vmalloc node

kmem_cache create

kmem_cache alloc

kmem cache_alloc_ trace

e ...and the corresponding free() routines, too.

regparm=3

* First three arguments to functions are passed through EAX, EDX, ECX.

* Tried compiling the kernel without the option, but failed to boot. &

* Information about the allocation request and result is not available at

the same time.

* Necessary to intercept execution twice: in the prologue and epilogue

of the allocator.

M=

; Attributes: bp-based frame

public _ kmalloc
__kmalloc proc near

var_28= duword ptr -28h

var_1C= dword ptr —1Ch requests[ESP]["size"] = EAX
var_18= dword ptr —-18h] "
var_14= duord Etr ~14h requests[ESP]["flags"] = ECX
var_1@= dwur?‘f:;=;l:2:::::::::::::::,————————————“—\\
push ebp
mou ebp, esp
push edi
push esi
push ebx
sub esp, 28h add esp, 28h
. mou ebx, eax
. mov eax, ebx
: - ebx
v pop esi
pop edi
pop ebp
retn o

Allocator logic
loc_C11CDAD

add esp, 2
mou eax, ebx
::::::::::::::::::::::::::::::::........ng Ezi set _taint(EAX, EAX + requests[ESP]["size"])]

pop edi
pup %
retn

loc_CA1CDABA:
add
mou
pop
pop
pop
pop
retn

kmem cache {create,alloc}

* Dedicated mechanism for quick allocation of fixed-sized memory regions (e.g. structs).
« kmem_cache_create creates a cache object (receives size, flags, constructor).
« kmem_cache_alloc allocates memory from cache.
« kmem_cache_free frees a memory region from cache.

« kmem_cache_destroy destroys the cache object.

* We need to:
* Maintain an up-to-date list of currently active caches.
* Break on cache constructors to set taint on memory.

* Break on allocators to set other metadata (e.g. caller’s EIP).

Propagating taint

* CONFIG_X86 GENERIC=y and CONFIG_X86 USE_3DNOW=n sufficient to

compile memcpy () into a combination of rep movs{d,b}.

text:C13CCH3B mou ebx, ecx
text:C13CCAH3D mou edi, eax
~text:C13CCH3F shr ecx, 2
.text:C13CCHY2 mow esi, edx
-text:C13CC4ll rep mouvsd

text:C13CCH4A mou ecx, ebhx
-text:C13CCLHLE and ecx, 3
-text:C13CC44B jz short loc CA3CC44F
text:C13CC44D rep movsh

-text:C13CCH4F

-text:C13CC44F loc CA3CCA4LF: ; CODE XREF: memcpy+1BTj
text:CA3CCHLF pop ehx

.text:C13CC450 pop esi

.text:C13CCA451 pop edi

-text:C13CCH52 pop ebhp

-textCA3CCA53 retn

text:CA3CCHS3 memcpy endp

Ubuntu 16.04 memory taint l[ayout

0XCc0000000o

OXFFFFEFFf

B stack pages [] heap pages 60 minutes of run time, 20s. interval, boot + trinity fuzzer + linux test project

Other useful CONFIG options

* CONFIG DEBUG INFO=y to enable debugging symbols.

* CONFIG VMSPLIT 3G=yto use the 3G/1G user/kernel split.
* CONFIG RANDOMIZE BASE=n to disable kernel ASLR.

* CONFIG X86 SMAP=n to disable SMAP.

* CONFIG HARDENED USERCOPY=n to disable sanity checks unnecessary

during instrumentation.

Detecting bugs — copy to user

* Set CONFIG X86 INTEL_USERCOPY=nto have copy to_user() compiledto

rep movs{d,b} instead of a sequence of mov.

_text:C13CCAZB mou ebx, ecx
.text:-C13CCAZD mou edi, eax
.text:C13CCAZF mow esi, edx
.text:C13CCA31 cmp ecx, 7
.text:C13CCA3L jbe short loc_CA13CCA4E
.text:C13CCA36 mow ecx, edi
.text:IC13CCA3E neq ecx
.text:C13CCA3A and ecx, 7
_text:C13CCA3D sub ebx, ecx
.text:-C13CCA3F rep moush
.text:C13CCAM1 mov ecx, ebx
.text:C13CCAL3 shr ecx, 2
.text:C13CCALG and ebx, 3
.text:C13CCALY nop

.textIC13CCALA rep movsd
.text:C13CCALE mou ecx, ebx
.text:C13CCALE

.text:-C13CCALYE loc CA3CCALE: ; CODE XREF: _ copy from user_ 11 nocache nozero+14Tj
.text:-C13CCALE rep moush
.text:C13CCASO pop ebx
.text:C13CCAS1 mov eax, ecx
.text:C13CCAS3 pop esi
.text:C13CCASY pop edi
.text-C13CCALS pop ebp
.text:C13CCASAH retn

.text:C13CCAS6 _ copy from user_ 11 nocache_nozero endp

Detecting bugs — put user

 Linux has a macro to write values of primitive types to userland memory.
* No internal memcpy (), so such leaks wouldn’t normally get detected.
e Each architecture has its own version of the macro, x86 too.

* Very difficult to modify the source to convert it to Bochspwn-compatible
rep movs.

 Various constructs passed as argument: constants, variables, structure fields,

function return values etc.

The solution —temporary strict mode

#define _ put user(x, ptr) \

({

1. Enable strict mode
(for current ESP)

__typeof__ (*(ptr)) __x;

__asm("prefetchtl (%eax)"); \

2. Evaluate expression
written to userland

A\

_x = (x); \

__asm("prefetcht2 (%eax)");
3. Disable strict mode]

Strict mode

« PREFETCH{1, 2} instructions are effectively NOPs in Bochs.

* Can be used as markers in the code, or ,hypercalls”.

* [In between PREFETCH1 and PREFETCH2, all reads of uninitialized memory
are reported as kernel->user leaks, if ESP is unchanged.
* The code block only contains evaluation of the expression being written to ring-3.

* Verifying ESP prevents polluting logs with reports from function calls, thread

preemptions etc.

* 365 such constructs added to the vmlinux used by Bochspwn.

Strict mode as seen in IDA

-EextIC1827F72
l.text:C1827F75
-text:C1827F/B
textiC1827F81

prefetcht1_byte ptr [eax] |

mov eax, [ebp+var_Bh]|
mov [ebp+uvar HL], eax
prefetcht2 byte ptr [eax]

-text:C1835918
l.text:C10835913
-text:C1835916
-textIC1835918
-text:C183591D
-text:C16835928

prefetcht1 _byte ptr [eax]|

' Sanitized

' Sanitized

mow eax, [ebp+uar_14] ¢
mowy edy, edl

call getreq

mov [ebp+var 18], eax

prefetcht2 byte ptr [eax]

. text:C11ED7 84
l.text:C11ED787
.text:C11ED78A
_text:C11ED78D
_text:C11ED798
_text:C11ED793

prefetchti_bute ptr [eaxzl)

mou eax, [ebp+var 18]
mou edx, [ebp+var_14]
mov [ebp+var 18], eax
mou [ebp+var C], edx

prefetcht2 byte ptr [eax]

Sanitized

Keeping track of modules, symbolization etc.

* Getting to the modules

Again, simple logic modules

unchanged since the

2013 Bochspwn.

Bochspwn report

READ of f5733f38 (4 bytes, kernel--->kernel), pc = f8aaf5c5

[Heap allocation not recognized]

Allocation origin: ©xcl6b4@bc: SYSC connect at net/socket.c:1524

Kernel debugging

4,— Ubuntu 16.10 32-bit (Debugger) [Running] - Cracle VM VirtualBox = B 8

sudo gdb “rlinux-compiled-sunlinux
GNU gdb (Ubuntu 7.11.90.20161005-0ubuntul) 7.11.90.20161005-git
Copyright (C) 2016 Free Software Foundation, Inc.
License GPLv3+: GNU GPL wversion 3 or later <http://gnu.org-licenses-/gpl.html>
This is free software: you are free to change and redistribute it.
Type “shouw copying"

There is NO WARRANTY, to the extent permitted by law.
and "show warranty” for details.
This GDB was configured as "i686-1inux—gnu".
Type “show configuration” for configuration details.
For bug reporting instructions, please see:
<http: uww.gnu.orgssof twaresgdbs/bugss> .
Find the GDB manual and other documentation resources omline at:
<http:/7uww.gnu.org/sof twaresgdbsdocumentations> .
For help, type "help”.
Type “apropos word"” to search for commands related to "word”...
Reading symbols from shomestestslinux-compiledsumlinux...done.
(gdb) target remote rsdevsttysS0
Remote debugging using ~dewsttysS0
kgdb_breakpoint () at kernelrdebug-debug_core.c:1072
1072 wnb(); = Sync point after breakpoint =~
(gdb) where
kgdb_breakpoint () at kernelrsdebug-sdebug_core.c:1072
0xc1118974 in kgdb_initial_breakpoint () at kernelsdebug-debug_core.c:973
kgdb_register_io_module (new_dbg_io_ops=0xc1bB85edd <kgdboc_io_ops>)
at kernel-debug/debug_core.c:1013
Oxc14df601 in configure_kgdboc () at driverssttyrsserial-kgdboc.c:Z00
Oxclc2?cd0 in init_kgdboc () at driverssttysserialrskgdboc.c:229
Oxc1002165 in do_one_initcall (fn=0xclcZ?cbf <init_kgdboc>) at initsmain.c:778
Oxclbe3cbl in do_initcall_level (level=<optimized out>) at initrmain.c:843
do_initcalls () at initrmain.c:851
do_basic_setup () at init/main.c:869
kernel_init_freeable () at init/main.c:1016
110 Oxci17chOcO in kernel_init (unused=<optimized out>) at initrsmain.c:942
11 Oxcl17d53eZ in ret_from_kernel_thread () at archsx86sentrysentry_32.5:223
112 0x00000000 in 77 ()
(gdb) _

= & 0= &R I @ 3 right control

@ Bochs for Windows - Display =

Copy Poghe Reset SUSPEND PO
"

‘_) CONFIG a 'b

.4185581 Asymmetric key parser "x509° registered
459.4195611 hounce: pool size: 64 pages
459.4227611 Block layer SCSI generic (bsg) driver version 0.4 loaded (major 2
418)

4242241 io scheduler noop registered
4245781 io scheduler deadline registered (default)
.4303511 io scheduler cfq registered
4374041 pci_hotplug: PCI Hot Plug PCI Core version: 0.5
.4382601 pciehp: PCI Express Hot Plug Controller Driver version: 0.4
.4408951 vesafb: mode is 640x480x32, linelength=Z560, pages=0
.4412671 vesafb: scrolling: redraw
4416631 vesafb: Truecolor: size=8:8:8:8, shift=24:16:8:0
.4424181 vesafb: framebuffer at Oxe0000000, mapped to OxfB6OOOO0, using 12
b6k, total 1216k
459.5777951 Console: suwitching to colour frame buffer device 80x30
459.7104331 fhO: VESA VUGA frame buffer device
459.7203051 GHES: HEST is not enabled?
459.7239781 isapnp: Scamming for PnP cards...
459.7364621 Serial: B250-16550 driver, 32 ports, IRQ sharing enabled
459.807415]1 00:05: ttySo at [0 Ox3f8 (irg = 4, base_baud = 115200) iz a 1655

460 .147649]1 tsc: Refined TSC clocksource calibration: 49.999 MHz

460.2326171 clocksource: tsc: mask: OxffFFFFFEEFFIFFFf max_cycles: OxbBBO3563]
nax_idle_ns: 440795203214 ns

460.5613721 isapnp: No Plug & Play device found

460 .6764541 KGDB: Registered I[-0 driver kgdboc

460 .7609501 KGDB: Waiting for comnection from remote gdb...

[
[
[
[
[
[
[
[
[
1
[
[
[
[
[
[
o0
[
[
3
[
[
[

Entering kdb (current=0xf60cbhb600, pid 1) on processor 0 due to Keyboard Ewntry
[0 1kdb>

CTRL + 3rd button enables mouse IPS: 33.726M

Testing performed

* Instrumentation run on Ubuntu 16.10 32-bit (kernel 4.8).

* Executed actions:
* System boot up.
* Logging in via SSH.
 Starting a few command-line programs and reading from /dev and /proc pseudo-files.
* Running Linux Test Project (LTP) unit tests.

* Running the Trinity + iknowthis system call fuzzers.

* Coverage-guided fuzzing with Syzkaller sounds like a perfect fit, but it doesn’t actively

support the x86 platform (currently only x86-64 and arm64).

Results!

Direct kernel—=>user disclosures

e Just one (1) minor bug!

* Disclosure of 7 uninitialized kernel stack bytes in the handling of

specific IOCTLs in ctl_ioctl (drivers/md/dm-ioctl.c).
« /dev/control/mapper device, only accessible to root. ®

* |ssue discovered around April 20t, | was just about to report it a few

days later, but...

author Adrian Salido <salidoa@google.com> |{2017-04-27 10:32:65 0700} T
committer Mike Snitzer <snitzer@redhat. com> 2017-04-27 13:55:13 -0400 ‘
commit 4517+564cA6117cTd1bE11bed952154430042287 (patch)

tree fE0@5a09d@ebbi27 fdo41lelclodifcalffEocaes

parent Ba4fflbcc2e25Flddf5b358c4va718ca@lfddB8e9 (diff)

download 1inux-4617f564c@8117c7d1bs1lbeda521a4430@42287 .tar. g2

dm ioctl: prevent stack leak in dm ioctl call

When calling a dm iectl that doesn't process any data

(IOCTL_FLAGS NO_PARAMS), the contents of the data field in struct
dm_iocctl are left initialized. Current code is incorrectly extending
the size of data copied back to user, causing the contents of kernel
stack to be leaked to user. Fix by only copying contents before data
and allow the functions processing the ioctl to override.

Cc: stablefvger.kernel.org

Signed-off-by: Adrian 5alido <salidoafigoogle.com:
Reviewed-by: Alasdair G Kergon <agk@iredhat.com:
Signed-off-by: Mike Snitzer <snitzer@redhat.com>

Diffstat

-rw-T—r— drivers/mdfdm-ioctl.c 2 Il

1 files changed, 1 insertions, 1 deletions

diff --git a/drivers/md/dm-icctl.c b/drivers/md/dm-ioctl.c
index ©956b86..dddas19 100644
--- afdrivers/md/dm-icctl.c
+++ bfdrivers/md/dm-icctl.c
Wi -1842,7 +1840,7 @ static int ctl_ieoctl{uint command, struct dm_iocctl _ user *user)
if (r)
goto out;

- param->data_size = sizeof({*param);
+ param->data_size = offsetof(struct dm_ioctl, data);

r = fn{param, input_param_size);

if (unlikely({param->flags & DM_BUFFER_FULL_FLAG) &%

2017-04-27 10:32:55 -0700

Global strict mode

* Looks like Linux doesn’t have any direct, trivially reachable infoleaks

to user-mode...

* Bochspwn can be used to also detect use of uninitialized memory, not

just leaks.

* With source code, it’s easy to analyze and understand each report.

* Let’s try our luck there?

Use of uninitialized memory bugs

Location Patch sent Found externally Memory type

Yes Yes Yes (after Bochspwn)

bind() and connect() handlers in multiple sockets

(bluetooth, caif, iucv, nfc, unix) Yes Yes No

deprecated_sysctl warning in kernel/sysctl _binary.c Yes Yes Yes (after Bochspwn)

SYSC_epoll ctl in fs/eventpoll.c Yes n/a

devkmsg_read in kernel/printk/printk.c Yes, on 4.10+ kernels n/a

dnrmg_receive_user_skb in

net/decnet/netfilter/dn_rtmsg.c U e B Heap

nfnetlink_rcv in net/netfilter/nfnetlink.c Yes Yes No Heap
ext4 _update_bh_state in fs/ext4/inode.c Yes n/a
nl fib_lookup in net/ipv4/fib_frontend.c Yes n/a

fuse_release_common in fs/fuse/file.c Yes Yes No Heap
apply_alternatives in arch/x86/kernel/alternative.c Yes Yes
__bpf_prog _run in kernel/bpf/core.c n/a n/a
crng_reseed in drivers/char/random.c n/a n/a
unmapped_area_topdown in mm/mmap.c n/a n/a

Bonus: A local kernel DoS (NULL Pointer Dereference) while experimenting with another bug.

Results summary

e Even though the list is long, the bugs are mostly insignificant.

* For example allow to answer ,,is an uninitialized byte on kernel stack equal to 0?”

* One regular memory disclosure vulnerability in AF_NFC.

* False positives are bound to happen, and sometimes they are true positives

that are just ,working as intended”.

* Good validation that the approach does work, but there just aren’t more

obvious issues to be found.

KernelMemorySanitizer

 Linux kernel development is very rapid, bugs get fixed every day.

* Most collisions happened with KMSAN.
e Currently under development by Alexander Potapenko.
* Run-time instrumentation added by compiler to detect use of uninitialized memory.

* Twin project of KernelAddressSanitizer, MemorySanitizer (for user-mode) and all

other Sanitizers.

* The correct long-time approach to the problem in Linux.

Conclusions

* The Linux community has been on top of the problem for the last few

years.

* Seemingly hardly any easy infoleaks left at all at this point.

* Some uses of uninit memory, but even these are not trivial to find.
* Even when bugs show up, they are rather short-lived.

* Most remaining bugs should be swept off by KMSAN in the near future.

Future work

Future work for Bochspwn

Run further iterations on Windows.

* Triage and get a better understanding of some of the uninitialized reads detected by

Bochspwn strict-mode.

Look into improving code coverage.

* Neverending story. Syzkaller does pretty well on Linux, no sensible equivalent for Windows.

Improve taint propagation logic beyond just rep movs.

Implement support for 64-bit guest systems.

* Opens many doors — new bugs, more coverage, etc.

Future work for Bochspwn

* Taint-less approaches:

* Poison stack and heap/pools with magic bytes, log all kernel->user writes with these
bytes, review all reports for bugs.

* Approach used (to an extent) by fanxiaocao and pijf.

* Generalize for two or more such sessions with different marker bytes. For every

write location which always has the marker at specific offset(s), that’s a bug!

* Addresses the problem of non-ideal taint propagation (for other tradeoffs).

Other (crazy) ideas

 Recompilation or binary rewriting to make the kernels transfer data

exclusively with movs{b,d} instructions? ©

* Apply the concept to other data sinks than just user-mode memory.

e Outgoing network traffic.
* File system metadata.

* Output files saved by desktop applications.

* Other security domains? Inter-process communication, virtualization.

Thanks!

@700ru
http://j00ru.vexillium.org/

700ru.vx@egmail .com

http://twitter.com/j00ru
http://j00ru.vexillium.org/
mailto:j00ru.vx@gmail.com

