
Exploring the 

Windows Registry 

as a powerful LPE 

attack surface
Mateusz Jurczyk

Microsoft BlueHat, October 2023





Registry: Lines of kernel code (decompiled)



Timeline of most important features

Windows NT 3.1 - 4.0

(1993 – 1996)

Initial implementation

Predefined Keys

Early hive versions: 1.1, 1.2

Major version 1.3 (Fast Leaf support)

Windows 2000

(2000)

Windows XP

(2001)

Key Rename

Registry Callbacks

Minor version 1.4 (Big Value support)

Major version 1.5 (Hash Leaf support)

Windows Server 2003

(2003)

Windows Vista

(2007)

KTM Transactions

Registry Virtualization

App Keys

Windows 7, 8, 8.1

(2009 – 2013)

Windows 10 1507, 1511

(2015)

Windows 10 1607

(2016)

Lightweight Transactions

Containers: Namespace Redirection

Containers: Differencing Hives

Major version 1.6 (Layered Key support)

Windows 10/11 1703 – 22H2

(2017 – 2022)



Why attack the registry?

• Local attack surface potentially allowing privilege escalation in the system

• Stores and operates on sensitive data (system configuration, user credentials)

• Many potential types of issues:

– Plain memory corruption

– Logic bugs

– Information disclosure

– Inter-process disruption (registry as a shared resource)

• Huge old/new C codebase with layers of complex mechanisms mixed together



Prior publicly known security research

• Evidently a lot of work done internally at Microsoft

• Relatively little prior art in the public space

– 2010: 5 bugs reported by Gynvael Coldwind and myself

– 2014 – 2020: 17 bugs by James Forshaw

 A consistent stream of kernel logic issues, many at the 

intersection of registry and other system mechanisms 

(security impersonation, file system)

– 2016: 4 bugs reported by James and me as a result of 

some basic hive format fuzzing

– 201X: Several isolated bugs reported by others (Fortinet, 

Maxim Suhanov)



This effort

• Started in May 2022 as a test of my new coverage-based fuzzer

• Found one (1) and only bug: GPZ-2299/CVE-2022-35768

– Windows Kernel multiple memory problems when handling incorrectly 

formatted security descriptors in registry hives

– Checks out as security descriptors are one of the few things well-suited 

for binary fuzzing

• The initial success prompted me to have a deeper look into 

the kernel

• It quickly turned into a challenge to review all of the code...



The research process

01

02

03

04
Reverse engineer

Choose a self-contained part of the registry 

implementation and try to get it as close to 

readable C-like code as possible.

Understand the logic
Try to understand the purpose, assumptions, 

guarantees and underlying intentions of 

the code.

Test, reproduce, report 

bugs
Test any discovered bugs, create reliable 

reproducers, write up detailed reports and 

submit them to Microsoft.

Compare with prior 

knowledge
Consider if the behaviour of the feature is 

consistent with what we already know about 

the registry.



Research progression: Major features

Hive loading

Basic operations

Registry virtualization

Transactions

Differencing hives

Registry callbacks



Results as of September 2023

• 33 issues marked as Fixed in the Project Zero 

bug tracker

• ~45 unique problems (in my assessment)

• 39 CVEs assigned by Microsoft

• ?? fixes introduced in the source code

Really hard to quantify 

actual number of bugs 

(what is a "bug"?)

Official classification:

• 33 x Windows Kernel Elevation of Privilege 

Vulnerability

• 5 x Windows Kernel Information Disclosure 

Vulnerability

• 1 x Windows Kernel Memory Information 

Disclosure Vulnerability





Reverse engineering



Reverse engineering the Windows Kernel

• An essential step: It probably took around 70-80% of the total 

research time

• Analysis primarily done on Windows Server 2019 (originally used for 

fuzzing), then reproduced on up-to-date Windows 11

• Tools: IDA Pro disassembler with Hex-Rays decompiler

• Extra aid: PDBs for ntoskrnl.exe hosted on the Microsoft Symbol Server

– Function names, global variable names, some structure layouts, some 

enum definitions



Before



After



The hard part

• Dealing with compiler optimizations: inlined functions, mangled arithmetic etc.

– Sometimes necessary to cross-check the same code in different builds of Windows

• Figuring out the missing pieces

– Reconstructing internal structures: the parse context, on-disk transaction log records, some structures 

related to virtualization/transactions, all structures related to differencing hives

– Reverse-engineering the meaning and names of constants – basically guesswork

 Both static and dynamic analysis employed to try to deduct their meaning

 Many of them still poorly/not understood

• Dear Microsoft: please publish more information through the public symbols, every bit helps



Understanding the code



Understanding the code

• Once the code is readable, we can analyze a particular feature as 

a whole

– What problem is it trying to solve?

– Is it implemented the same way I would intuitively do it? If not, why?

– Is it internally consistent?

– Does it correctly handle error conditions?

– Does it behave in accordance with the documentation?

– Does it make any assumptions that aren't explicitly enforced?

– What interesting primitives does it enable? 

(even if they're not bugs on their own)

• Exposes deeper, logic bugs and structural weaknesses



Examples of deep-rooted bug classes

Resource exhaustion Handling partial success 

in multi-step operations

Constraints of the hive 

binary format: 

Expectations vs reality



Resource exhaustion

• Every "create" and "set" operation internally (re)allocates buffers from the hive storage or kernel pools

• A local attacker may try to interfere by exhausting both types of memory:

– Hive storage: allocation failure very practical and easy to trigger

– Kernel pools: allocation failure possible but slightly less practical



Hive size limit exhaustion

• Two separate quotas enforced on registry size:

– The maximum size of a single hive is 4 GiB

– The cumulative system-wide registry quota is also 4 GiB

• That's two ways to reliably cause HvAllocateCell to fail

• Opens up a plethora of interesting, deep error code paths to review

– Every such path needs to restore the registry to a known-good state

– Most of them are probably poorly tested, as they almost never trigger in real life

• One of my main focuses throughout the research



Resource exhaustion – Allocation call sites



Partial success of multi-step operations

• Error handling gets even more difficult across function boundaries

• Information about outcome is passed back via a NTSTATUS return value

– In theory a 32-bit type, in practice mostly used as a binary success/failure differentiator

– Semantically more of a "last error encountered" than "overall operation status"

• Not many, but there are some functions implementing multi-step operations

– CmpReplicateKeyToVirtual – recreates a virtualized key in the user's hive (virtual store)

– CmpTransMgrCommit – commits an entire transaction, which may consist of an unlimited number 

of operations



Error handling-related bugs

• GPZ-2330: Windows Kernel registry use-after-free due to bad handling of failed reallocations under 

memory pressure

• GPZ-2369: Windows Kernel use-after-free due to dangling registry link node under paged pool memory 

pressure

• GPZ-2375: Windows Kernel multiple issues in the key replication feature of registry virtualization

• GPZ-2394: Windows Kernel multiple issues in the prepare/commit phase of a transactional registry 

key rename

• GPZ-2410: Windows Kernel CmpCleanupLightWeightPrepare registry security descriptor refcount leak 

leading to UAF

• GPZ-2433: Windows Kernel KTM registry transactions may have non-atomic outcomes

• GPZ-2456: Windows Kernel partial success of registry hive log recovery may lead to inconsistent state and 

memory corruption



Constraints of the hive format

• When loading a hive, the kernel performs 

extensive sanity checks of its structure

– CmpCheckKey, CmpCheckValueList, many other 

CmpCheck* functions

• While quite strict, the checks still allow(ed) some 

constructs that would never be produced by the 

kernel itself: by mistake or by design

Accepted by the

hive loader

Written by the 

kernel



Odd-but-accepted construct examples

Hive data construct Accepted by loader Written by kernel

Large cells >16 KiB not aligned to power of two ✅ ❌

Non-compressed ASCII-only key names ✅ ❌

Empty subkey lists ✅ ❌

Leaf subkey lists longer than 507/1013 elements ✅ ❌

Subkey list types incompatible with hive version ✅ ❌

Unused security descriptors ✅ ❌

Duplicate security descriptors ✅ ❌

Values with duplicate names ✅ ❌



Odd-but-accepted construct examples

Hive data construct Accepted by loader Written by kernel

Large cells >16 KiB not aligned to power of two ✅ ❌

Non-compressed ASCII-only key names ✅ ❌

Empty subkey lists ✅ ❌

Leaf subkey lists longer than 507/1013 elements ✅ ❌

Subkey list types incompatible with hive version ✅ ❌

Unused security descriptors ✅ ❌

Duplicate security descriptors ✅ ❌

Values with duplicate names ✅ ❌



Interactions between features



Interactions between features

• The original registry design from Windows NT seems defendable

– Simple, predictable operations that work exactly as advertised

• Then increasingly complex features got introduced, complicating 

internal state

– KCB size: 64 bytes in Windows 2000, 176 bytes in Windows 10 22H2

• Each of them implements some kind of ✨magic✨ that may not be 

obvious to other parts of the kernel

• Let's consider how they deviate from the baseline mental model



Special types of keys

Symbolic links (flag 0x10)

• Transparently point to another registry key, if 

opened with default options

• Makes it harder to reason if opening a key really 

opened that key, or even the intended hive

• Often useful as an exploitation primitive

• Can be created via API, used extensively by 

Windows itself

Predefined-handle keys (flag 0x40)

• Transparently point to a chosen predefined key 

(HKLM, HKCU, HKCR, etc.)

• Have no values, the ValueList part of key node is 

reused for a different purpose

• Cannot be operated on by most syscalls – supposed 

to only ever be opened



Registry virtualization

• Compatibility mechanism to create the illusion of running as 

administrator

• Redirects and replicates operations within the system-wide 

HKLM\Software hive to a user-accessible copy in 

HKCU\Software\Classes\VirtualStore

• Outcome: creation of a key in a different location than specified, or 

reading from multiple sources when the caller thinks it's just one key



Transactions

Transacted registry: Everything is, isn't, or is pending

Commit

Key doesn't exist
Create key Key exists in 

transaction

Key exists

Key doesn't exist
Revert

Normal registry: Everything either is or isn't

Key doesn't exist Key exists
Create key



Transactions

• There is no ground truth about the state of the registry, everything is 

considered in the scope of the specific alternate reality (transaction)

• A key may exist in the global view but not in a transaction, and vice 

versa

– All aspects of keys may be subject to alternate states: name, subkeys, values, 

security

• Significant complexity added to all registry code

– Non-transacted write operations must revert pending transactions 

concerning the given key 

– Transacted write operations must be careful to avoid collisions with other 

existing transactions

– All read operations must correctly incorporate transacted state



Differencing hives

• Windows 10 1607 added another huge complication to support containers: differencing hives

• Normal hives are standalone, self-sufficient databases for storing data

• Delta hives are "patch sets" to be applied to another hive (base or delta)

• They can be stacked on top of each other in case of nested containers

• A key referenced through a differencing hive is a layered key



Normal registry tree

Root



Differencing hives tree

Layer height 0 (base hive)

Layer height 1

Layer height 2



Layered key tree

Layer height 0 (base hive)

Layer height 1

Layer height 2
Merge-

unbacked
Tombstone

Supersede-

tree

Supersede-

local

Merge-

backed

Merge-

backed



Layered key stack

Layer height 0 (base hive)

Layer height 1

Layer height 2
Merge-

unbacked
Tombstone

Supersede-

tree

Merge-

backed

Supersede-

local

Merge-

backed



Layered keys

• Turns everything that we know about the registry upside down

• Every key node is now part of two trees in different dimensions

– Operations like rename have to basically think in 3D

• A key is not represented by a single key: it's now a key stack

• The existence of a key node doesn't mean that it exists: see Tombstones

• The absence of a key node doesn't mean that it doesn't exist:

see Merge-unbacked semantics



So how do they all 

work together?



Predefined 

Keys

Transactions
Layered 

Keys

Symbolic 

Links

Registry 

Virtualization



Cross-feature bugs

• GPZ-2359: Windows Kernel use-after-free due to bad handling of predefined keys in 

NtNotifyChangeMultipleKeys

• GPZ-2366: Windows Kernel memory corruption due to insufficient handling of predefined keys in registry 

virtualization

• GPZ-2375: Windows Kernel multiple issues in the key replication feature of registry virtualization

• GPZ-2389: Windows Kernel registry virtualization incompatible with transactions, leading to inconsistent 

hive state and memory corruption

• GPZ-2445: Windows Kernel arbitrary read by accessing predefined keys through differencing hives

• GPZ-2446: Windows Kernel may reference unbacked layered keys through registry virtualization

• GPZ-2447: Windows Kernel may reference rolled-back transacted keys through differencing hives

• GPZ-2452: Windows Kernel CmDeleteLayeredKey may delete predefined tombstone keys, leading to 

security descriptor UAF



Case study: Predefined keys vs the world

• Predefined keys are supposed to be rejected by almost all syscalls

• Otherwise, internal kernel functions are unaware of their semantics 

and will usually crash when operating on them

• It's necessary to use a safe wrapper to filter them out while 

referencing a key handle: CmObReferenceObjectByHandle

• Did it cover all potential scenarios?



Case study: Predefined keys vs the world

Date GPZ# Description



Case study: Predefined keys vs the world

Date GPZ# Description

September 2022 2359 NtNotifyChangeMultipleKeys doesn't go through the safe wrapper



Case study: Predefined keys vs the world

Date GPZ# Description

September 2022 2359 NtNotifyChangeMultipleKeys doesn't go through the safe wrapper



Case study: Predefined keys vs the world

Date GPZ# Description

September 2022 2359 NtNotifyChangeMultipleKeys doesn't go through the safe wrapper

October 2022 2366 Registry virtualization doesn't go through the safe wrapper



Case study: Predefined keys vs the world

Date GPZ# Description

September 2022 2359 NtNotifyChangeMultipleKeys doesn't go through the safe wrapper

October 2022 2366 Registry virtualization doesn't go through the safe wrapper



Case study: Predefined keys vs the world

Date GPZ# Description

September 2022 2359 NtNotifyChangeMultipleKeys doesn't go through the safe wrapper

October 2022 2366 Registry virtualization doesn't go through the safe wrapper

October 2022 2375
Registry virtualization uses unsafe CmpRebuildKcbCache which doesn't refresh the cache of 

predefined keys



Case study: Predefined keys vs the world

Date GPZ# Description

September 2022 2359 NtNotifyChangeMultipleKeys doesn't go through the safe wrapper

October 2022 2366 Registry virtualization doesn't go through the safe wrapper

October 2022 2375
Registry virtualization uses unsafe CmpRebuildKcbCache which doesn't refresh the cache of 

predefined keys



Case study: Predefined keys vs the world

Date GPZ# Description

September 2022 2359 NtNotifyChangeMultipleKeys doesn't go through the safe wrapper

October 2022 2366 Registry virtualization doesn't go through the safe wrapper

October 2022 2375
Registry virtualization uses unsafe CmpRebuildKcbCache which doesn't refresh the cache of 

predefined keys

April 2023 2445
The "safe" wrappers CmObReferenceObjectByHandle and CmObReferenceObjectByName

are insufficient for layered keys



Case study: Predefined keys vs the world

Date GPZ# Description

September 2022 2359 NtNotifyChangeMultipleKeys doesn't go through the safe wrapper

October 2022 2366 Registry virtualization doesn't go through the safe wrapper

October 2022 2375
Registry virtualization uses unsafe CmpRebuildKcbCache which doesn't refresh the cache of 

predefined keys

April 2023 2445
The "safe" wrappers CmObReferenceObjectByHandle and CmObReferenceObjectByName

are insufficient for layered keys

May 2023 2452
CmDeleteLayeredKey bypasses safe wrappers by directly freeing predefined keys via 

CmpFreeKeyByCell



The ultimate fix

• Finally, GPZ-2445 and GPZ-2452 were fixed in July 2023 by deprecating 

predefined keys completely

– Flag 0x40 is cleared in CmpCheckKey for every key while loading a hive

• Great to see, as the feature is probably hardly used but was the source 

of many bugs and much confusion



Testing, reproducing, reporting



Testing 

What is this 

code?

It's a bug!

Hmm no, not 

a bug

Wait...

Yeah, it's a bug,

but not reachable

It's a real vuln when 

combined with these two 

other mechanisms

Three months pass



Testing

• This is where you really learn how the registry works

• So many moving pieces that it's almost impossible to be sure of any 

behavior before testing it

• Tooling:

– Virtual machines + WinDbg: the !reg extensions are great

– RegEdit, Process Monitor, Process Explorer

– Own, custom tools for more advanced stuff: creating symlinks, loading 

differencing hives etc.



Reproducing the bugs

• I try to trigger a system bugcheck / obvious security violation for 

every bug

– Crashes typically don't just happen, deliberate action is needed to 

demonstrate the corruption

• Registry API is well documented, so writing C++ reproducers is smooth

• Crafting semi-well but unusually formatted hives was the more 

difficult part

– Hard to find existing tooling for my specific needs

– Ended up manually patching the built-in Offline Registry Library (offreg.dll) 

to produce most of my binary hive PoCs



Reporting

All security bugs filed in 

the Project Zero bug 

tracker and submitted 

to MSRC

All reported bugs 

successfully fixed within 

90+14 days so far

Average time to fix from 

report until patch publicly 

available: 81 days



Verifying fixes

• An optional step, but I try to keep track of all registry changes on a 

monthly basis

• There's a lot to learn

– See if the fixes were correct/complete

– See which avenue was taken – point fix, global code refactoring, something 

in between?

– See if any lesser bugs mentioned in the reports were addressed

– See if any internally found variants I was unaware of were patched

– See if any (un)related functional changes were made

• Found out about some good work this way

– Attack surface reduction: KTM transactions, transacted renames, 

predefined keys

– Code hardening: Integer overflow checks for security refcounts, rejecting cell 

index -1 in cell translation code



Bonus: Exploitation



Exploitation

• A huge subject on its own

• Depends largely on the type of bugs and initial primitives

– Logic issues: usually easiest and most reliable to exploit, but not that many of 

them in this research (did James find them all?)

– Pool-based memory corruption: state-of-the-art exploitation techniques apply

– Hive-based memory corruption: an unexplored class of issues worth 

investigating further



Registry hive layout

Source: Windows Internals, 7th Edition, Part 2 (A. Allievi, A. Ionescu, M. Russinovich, D. Solomon)

Block boundaries

Base block Empty bin Root Vol 1
Sub 

Key
Vol 2

Bin 1

Bin 2Key cell (key node)

Value cell

Value-list cell

Subkey-list cell

Free space



Comparing to heap/pool allocators

• Divided into contiguous "free" and 

"allocated" cells, which are arbitrarily sized 

chunks of data

• Some cells have a predefined structure

(e.g. key nodes), while others contain 100% 

user-specified data (e.g. value data)

Similarities Differences

• Exact same data layout maintained on disk 

and in memory

• No randomization (100% deterministic) or any 

protection against temporal/spatial violations

• Most bugs allow reliably replacing/corrupting 

arbitrary objects in the hive



So what do we corrupt?

• Corrupting our own hive gets us nowhere

• At first glance, there are no pointers or anything to take us "outside" of the hive

• The solution: cell indexes

– 32-bit unsigned integers used to reference cells between each other

– On disk: simple offsets within the hive file

– In memory: offsets into a multi-level page table-like structure (cell maps)

– At runtime, the HvpGetCellPaged function is used for the translation:

HvpGetCellPaged(uint32 CellIndex) → void* VirtualAddress



Cell maps and cell indexes

Source: Windows Internals, 7th Edition, Part 2 (A. Allievi, A. Ionescu, M. Russinovich, D. Solomon)

Cell

Cell index

Hive’s cell map directory

Cell map table
Target block

Director index Table index Byte offset

32

0

1023

511

0

0

Hive cell map directory pointer



Out-of-bounds cell indexes

• Due to how cell maps are allocated, an OOB index can be abused to point to:

– An arbitrary address

– Specific objects in memory

– Itself (self-referential cell index)

• Not quite Turing-complete, but firmly in the category of a "weird machine"

• Provides an address leak and arbitrary read/write, all with one bug

• Enables a reliable, data-only LPE attack





Takeaways

• The registry is a fascinating research target, but has been publicly 

underexplored throughout its history

• If you're a researcher: deep, persistent analysis pays off

• If you're a software vendor: attack surface reduction, elimination 

of entire bug classes and well-placed mitigations have an 

outsized impact on security



© Copyright Microsoft Corporation. All rights reserved. 

Closing slide


