
Peeling Back the Windows Registry Layers:
A Bug Hunter's Expedition

Mateusz Jurczyk
REcon, June 2024

The registry fundamentals

● A hierarchical database for storing system/application settings in Windows

● Essential concepts: hives, keys and values

● Built-in tools for management: Regedit.exe (GUI), Reg.exe (CLI)

● Documented Registry API for software developers

● Most of the implementation is in the kernel

A bit of history

● First introduced in Windows 3.1 (1992) to replace INI files

● Current code and design directly rooted in Windows NT 3.1 (1993) and

Windows NT 4.0 (1996)

● Started out small, then extended and improved over the next 30 years
○ Performance improvements: faster subkey lookups, optimized key renaming

○ Backwards compatibility: registry virtualization

○ New features: big values, registry callbacks, transactions, application hives, differencing hives

Lines of decompiled kernel code

Registry as an attack surface: the good

👍 Ability to load custom hives as an unprivileged user

👍 Access to sensitive data: system configuration, user credentials

👍 Error prone parts of the design: self-healing, size-bound, heavily optimized

👍 A mixture of complex C code from different eras: from 30 years ago to now

👍 A variety of potential bug classes and attack vectors

Registry as an attack surface: the bad*

👎 Very hard to fuzz effectively

👎 Source code not available, and documentation is poor for specific areas

👎 Public symbols incomplete, lack some type definitions

👎 Lots of reverse engineering required: significant time and energy investment

👎 Not all bugs are good, as usual

How the research started

● Started in May 2022 as a test of my new coverage-based fuzzer for the

Windows kernel

● Found one bug: CVE-2022-35768
○ Windows Kernel multiple memory problems when handling incorrectly formatted security

descriptors in registry hives

● The initial success prompted me to have a deeper look into the kernel

● It quickly turned into a challenge to reverse and review all of the code...

The research process

01

02

03

04Reverse engineer

Choose a self-contained part of the registry
implementation and try to get it as close to

readable C-like code as possible.

Understand the logic

Try to understand the purpose,
assumptions, guarantees and underlying

intentions of the code.

Test, reproduce, report bugs

Test any discovered bugs, create reliable
reproducers, write up detailed reports and
submit them to Microsoft.

Compare with prior
knowledge

Consider if the behavior of the feature is
consistent with what we already know
about the registry.

Research progression: major features

Hive loading

Basic operations

Registry virtualization

Transactions

Differencing hives

Registry callbacks

How it went

● The audit lasted for ~20 months between May 2022 – December 2023

● Results:
○ 39 issues reported in the Project Zero bug tracker (under a 90 day deadline)

○ 20 issues reported outside the tracker (no deadline, low/unclear severity)

○ = 50 CVEs assigned by Microsoft across 15 monthly bulletins

Bug classes

File parsing
bugs

Object lifetime
bugs

Logic bugs

Kernel-specific
bugs Windows Registry

https://bugs.chromium.org/p/project-zero/issues/list?q=finder%3Amjurczyk%20opened%3E2022-05-01%20opened%3C2024-01-01&can=1

https://bugs.chromium.org/p/project-zero/issues/list?q=finder%3Amjurczyk%20opened%3E2022-05-01%20opened%3C2024-01-01&can=1

https://github.com/googleprojectzero/p0tools/tree/master/WinRegLowSeverityBugs

https://github.com/googleprojectzero/p0tools/tree/master/WinRegLowSeverityBugs

Lessons learned

● Software continues to have bugs 🤯
● Different bugs lie at different points on the code understanding scale 📏
● Security research is akin to peeling back the layers of an onion 🧅

A taxon(ion)omy of bugs

Level of context required
(easiest to hardest to find?)

A taxonomy of bugs

10. Fuzzable

9. Greppable

8. Obvious, local bugs

7. Information disclosure

6. Local bugs of omission

5. Cross-function bugs

4. Concurrency-related bugs

🥉 Object-lifetime bugs

🥈 Cross-feature bugs

🥇 Logic bugs

A taxonomy of bugs

10. Fuzzable

9. Greppable

8. Obvious, local bugs

7. Information disclosure

6. Local bugs of omission

5. Cross-function bugs

4. Concurrency-related bugs

🥉 Object-lifetime bugs

🥈 Cross-feature bugs

🥇 Logic bugs

Fuzzable bugs

● Virtually zero knowledge of the target required, only its behavior and

examples of inputs:
○ How to build it (optional)

○ How to run it and pass input data

○ How it fails/crashes

Registry fuzzing – easy in theory

● Hives are a binary format

● Input samples readily available in

Windows

● Initial harness easy to write
○ RegLoadAppKey + RegCloseKey

● Simple bug detection
○ Catching BSoDs / unexpected reboots

Registry fuzzing – hard in practice

● Hives are a binary format

● Input samples readily available in

Windows

● Initial harness easy to write
○ RegLoadAppKey + RegCloseKey

● Simple bug detection
○ Catching BSoDs / unexpected reboots

Registry fuzzing – hard in practice

● Hives are a binary format

● Input samples readily available in

Windows

● Initial harness easy to write
○ RegLoadAppKey + RegCloseKey

● Simple bug detection
○ Catching BSoDs / unexpected reboots

● Structurally very simple

● Most interesting bugs occur on

a higher level

● Bitflipping can only trigger the

lowest hanging fruit

Registry fuzzing – hard in practice

● Hives are a binary format

● Input samples readily available in

Windows

● Initial harness easy to write
○ RegLoadAppKey + RegCloseKey

● Simple bug detection
○ Catching BSoDs / unexpected reboots

Default hives don't contain any

interesting/non-standard constructs

Registry fuzzing – hard in practice

● Hives are a binary format

● Input samples readily available in

Windows

● Initial harness easy to write
○ RegLoadAppKey + RegCloseKey

● Simple bug detection
○ Catching BSoDs / unexpected reboots

● This only covers a very small part

of the registry

● Dozens of other operations

required to properly test the code

Registry fuzzing – hard in practice

● Hives are a binary format

● Input samples readily available in

Windows

● Initial harness easy to write
○ RegLoadAppKey + RegCloseKey

● Simple bug detection
○ Catching BSoDs / unexpected reboots

Most registry bugs don't trigger hard crashes

● Hive memory corruption

● Logic bugs

Registry fuzzing – hard in practice

● This might explain why only 1 bug was fuzzed out
○ Miscalculation of a security descriptor buffer size

○ Trivial leak of OOB kernel pool data into the hive file

○ Likely wouldn't have been found manually

● ... and why the other 49 survived for so long

CVE-2022-35768

Owner Sacl DaclGroupHeaderRtlLengthSecurityDescriptor() = ✅

buffer size = sum of components

OwnerHeader Sacl

CVE-2022-35768

RtlLengthSecurityDescriptor(Dacl) = ❌ too large Group

RtlLengthSecurityDescriptor(Owner Sacl Dacl) = ❌ too smallGroupHeader

A taxonomy of bugs

10. Fuzzable

9. Greppable

8. Obvious, local bugs

7. Information disclosure

6. Local bugs of omission

5. Cross-function bugs

4. Concurrency-related bugs

🥉 Object-lifetime bugs

🥈 Cross-feature bugs

🥇 Logic bugs

Patterns for grepping

● General:
○ Buffer operations: calls to memcpy etc.

○ Dynamic allocations: calls to malloc etc.

○ Integer arithmetic: especially next to allocations, on 16-bit types etc.

● Kernel-specific:
○ Pointer probing: ProbeForRead / ProbeForWrite calls, references to MmUserProbeAddress

● Registry-specific:
○ Calls to the hive allocator: HvAllocateCell, HvReallocateCell, HvFreeCell

○ Operating on key handles: references to CmKeyObjectType

Example: long strings

● Under certain circumstances*, registry paths may be over 64 KiB long

● Windows stores strings, including registry paths, in UNICODE_STRING
○ 16-bit Length and MaximumLength fields

● Manually calculating the unicode buffer size may indicate insecure code

● Relatively easy to grep for 16-bit arithmetic in x86 assembly:

(add|sub)\s+[a-z][xi],

Examples 🐛

CmRealKCBToVirtualPath (CVE-2022-37990)

CmpVEExecuteVirtualStoreParseLogic (CVE-2022-38038)

CmpDoWritethroughReparse (CVE-2022-38039) VrpBuildKeyPath (CVE-2023-36576)

A taxonomy of bugs

10. Fuzzable

9. Greppable

8. Obvious, local bugs

7. Information disclosure

6. Local bugs of omission

5. Cross-function bugs

4. Concurrency-related bugs

🥉 Object-lifetime bugs

🥈 Cross-feature bugs

🥇 Logic bugs

Obvious, local bugs

● Disclaimer: often "obvious" only after hours of reversing

● Typical root causes:
○ Evident out-of-bounds array accesses

○ Incorrect allocation size

○ Incorrect return value

○ Incorrect reference counting

● Most frequent bug class in the research: 13 of 50

Example (CVE-2022-34707)

BOOLEAN CmpCheckAndFixSecurityCellsRefcount(CMHIVE *CmHive) {

 ...

 for (int i = 0; i < CmHive->SecurityCount; i++) {

 CM_KEY_SECURITY_CACHE_ENTRY *CacheEntry = &CmHive->SecurityCache[i];

 CM_KEY_SECURITY *SecurityNode = CmHive->Hive.GetCellRoutine(CmHive, CacheEntry->Cell);

 if (SecurityNode->ReferenceCount < CacheEntry->CachedSecurity->RealRefCount) {

 SecurityNode->ReferenceCount = CacheEntry->CachedSecurity->RealRefCount;

 }

 }

 ...

}

Example (CVE-2022-34707)

BOOLEAN CmpCheckAndFixSecurityCellsRefcount(CMHIVE *CmHive) {

 ...

 for (int i = 0; i < CmHive->SecurityCount; i++) {

 CM_KEY_SECURITY_CACHE_ENTRY *CacheEntry = &CmHive->SecurityCache[i];

 CM_KEY_SECURITY *SecurityNode = CmHive->Hive.GetCellRoutine(CmHive, CacheEntry->Cell);

 if (SecurityNode->ReferenceCount < CacheEntry->CachedSecurity->RealRefCount) {

 SecurityNode->ReferenceCount = CacheEntry->CachedSecurity->RealRefCount;

 }

 }

 ...

}

What about inadequately
large refcounts?

CVE-2022-34707

● The bug lead to a refcount integer overflow, and a security descriptor

use-after-free in the hive mapping
○ A registry-specific memory corruption primitive that hasn't been explored before

● With some work, it can be converted to a KASLR leak and arbitrary read/write

● For details, see my latest OffensiveCon talk on exploitation

https://www.youtube.com/watch?v=qllMa2UUPvY

Demo

A taxonomy of bugs

10. Fuzzable

9. Greppable

8. Obvious, local bugs

7. Information disclosure

6. Local bugs of omission

5. Cross-function bugs

4. Concurrency-related bugs

🥉 Object-lifetime bugs

🥈 Cross-feature bugs

🥇 Logic bugs

Kernel information disclosure

● Disclosing uninitialized kernel stack/pool memory: partially filled arrays,

padding structure bytes etc.

● Could be fuzzable or greppable, but it's harder, hence its own category
○ Never triggers a system crash, requires a dedicated detector (e.g. Bochspwn Reloaded)

○ Doesn't stand out when reading the code

● Enables a local attacker to leak kernel addresses or other system secrets

Examples 🐛

● Issue 2418 (CVE-2023-28271)

○ The kernel directly saved a kernel structure with pointers and padding bytes to a file

○ Required the use of transactions and observing that the log files are user-readable

● Issue 2463 (CVE-2023-38140)

○ In principle, a standard kernel memory disclosure bug

○ Existed in a very specific code path, required layered keys and invoking a system call directly

Demo

A taxonomy of bugs

10. Fuzzable

9. Greppable

8. Obvious, local bugs

7. Information disclosure

6. Local bugs of omission

5. Cross-function bugs

4. Concurrency-related bugs

🥉 Object-lifetime bugs

🥈 Cross-feature bugs

🥇 Logic bugs

Local bugs of omission

● Bugs that are local in scope, but caused by something that is not in the code

● Require a different mindset to identify
○ Consider whether a function does everything it should be doing in every code path

● Good candidates:
○ Missing bounds/correctness checks of some structure fields

○ Missing handling of specific object types in generic functions

○ Missing return value checks

○ Missing state unwinding in error code paths

Example (CVE-2023-28248)

VOID CmpCleanupLightWeightUoWData(CM_KCB_UOW *UoW) {
 switch (UoW->ActionType) {
 //
 // Other action types...
 //

 case UoWSetSecurityDescriptor:
 CM_UOW_SET_SD_DATA *SecurityData = UoW->SecurityData;
+ CmpDereferenceSecurityNode(SecurityData->Hive, SecurityData->SecurityCell);
 ExFreePoolWithTag(SecurityData, 'wUMC');
 break;
 }
}

Missing security
descriptor dereference

Example (CVE-2023-28248)

● A functionality-neutral issue

● Virtually impossible to find without careful analysis of the logic of the function

● Outcome:
○ The missing call leads to a leak of a single reference

○ The security descriptor refcount is a uint32, and can be incremented multiple times

○ There is no overflow protection, and once the value overflows, we get a UAF

● The proof-of-concept takes ~20 hours to complete

Demo ⏳

A taxonomy of bugs

10. Fuzzable

9. Greppable

8. Obvious, local bugs

7. Information disclosure

6. Local bugs of omission

5. Cross-function bugs

4. Concurrency-related bugs

🥉 Object-lifetime bugs

🥈 Cross-feature bugs

🥇 Logic bugs

Cross-function bugs

● Bugs that are rooted in (mis)interactions between two or more functions

● Examples observed in the registry:
○ Assumption that certain internal functions never fail

○ Assumption that a failed call implies no internal state change

○ Confusion about what success/failure even means

○ Using the wrong function for the wrong task

Example (CVE-2023-23423)

NTSTATUS CmpCommitRenameKeyUoW(CM_KCB_UOW *UoW) {
 // ...

 if (!CmpAddSubKeyEx(Hive, ParentKey, NewNameKey) ||
 !CmpRemoveSubKey(Hive, ParentKey, OldNameKey)) {
- CmpFreeKeyByCell(Hive, NewNameKey);
+ HvFreeCell(Hive, NewNameKey);
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 // ...
}

Deep vs. shallow free

Successful rename case

"OldName" key

Class SecurityDescriptor Value list

Value Value Value

Successful rename case

"OldName" key "NewName" key

Class SecurityDescriptor Value list

Value Value Value

Successful rename case

"OldName" key "NewName" key

Class SecurityDescriptor Value list

Value Value Value

Failed rename case (correct)

"OldName" key

Class SecurityDescriptor Value list

Value Value Value

Failed rename case (correct)

"OldName" key "NewName" key

Class SecurityDescriptor Value list

Value Value Value

Failed rename case (correct)

"OldName" key "NewName" key

Class SecurityDescriptor Value list

Value Value Value

Failed rename case (buggy)

"OldName" key

Class SecurityDescriptor Value list

Value Value Value

Failed rename case (buggy)

"OldName" key "NewName" key

Class SecurityDescriptor Value list

Value Value Value

Failed rename case (buggy)

"OldName" key "NewName" key

Class SecurityDescriptor Value list

Value Value Value

A taxonomy of bugs

10. Fuzzable

9. Greppable

8. Obvious, local bugs

7. Information disclosure

6. Local bugs of omission

5. Cross-function bugs

4. Concurrency-related bugs

🥉 Object-lifetime bugs

🥈 Cross-feature bugs

🥇 Logic bugs

Race conditions

● Bugs that require an understanding of how global state can be manipulated in

different code paths at the same time

● General problem types:
○ Missing synchronization of access to a resource

○ Bad synchronization: shared vs. exclusive access

○ Bad synchronization: locking the wrong thing (two registry reports)

○ Interactions with user-mode memory: double fetches etc. (one registry report)

Example (CVE-2023-38141)

Kernel-mode

User-mode

Registry callbacks?

Client program

Pre callbacks Registry
operation Post callbacks

Client program

enter syscall

exit syscallexit syscall

Operating on input/output pointers

Operating on input/output pointers

Problem #1: untrue for some operations:
● SetInformationKey
● QueryMultipleValueKey

Operating on input/output pointers

Problem #1: untrue for some operations
● SetInformationKey
● QueryMultipleValueKey

Problem #2: documented, but surprising
even for Windows kernel developers

A taxonomy of bugs

10. Fuzzable

9. Greppable

8. Obvious, local bugs

7. Information disclosure

6. Local bugs of omission

5. Cross-function bugs

4. Concurrency-related bugs

🥉 Object-lifetime bugs

🥈 Cross-feature bugs

🥇 Logic bugs

Object lifetime bugs

● Bugs that require understanding of how objects are created, managed and

destroyed in time
○ Temporal violations, typically use-after-free

● In registry, a key's lifetime may be hard to reason about
○ Referenced by a handle in the period between RegOpenKey and RegCloseKey

○ Within that time, many things can happen:

■ The key can be renamed / deleted

■ Its parent key can be renamed

■ The underlying hive can be unloaded

Key lifetime challenges

● Challenge 1: renaming keys (NtRenameKey)
○ Very complex, combines the delete + create operation in one

● Challenge 2: uncommitted transactions
○ Operations aren't atomic; an intermediate state gets exposed that had previously been hidden

● Put the things together: renaming + transactions = Schrödinger's key ☢
○ A single key is simultaneously known by two different names, and its subkeys by two paths

○ The Windows NT-era registry was not designed for this

All reports fixed collectively in March 2023 by disabling transacted renames

Examples

KCB tree

CVE-2023-23420

"Parent"

"OldName"

"Subkey"

1. Open a handle to Parent\OldName\Subkey

to create its corresponding KCB

KCB tree

CVE-2023-23420

"Parent"

"OldName"

"Subkey"

1. Open a handle to Parent\OldName\Subkey

to create its corresponding KCB

2. Transactionally rename "OldName"

"NewName"
(transacted)

KCB tree

CVE-2023-23420

"Parent"

"OldName"

"Subkey"

1. Open a handle to Parent\OldName\Subkey

to create its corresponding KCB

2. Transactionally rename "OldName"

3. Open a handle to Parent\NewName\Subkey

"NewName"
(transacted)

"Subkey"

KCB tree

CVE-2023-23420

"Parent"

"Subkey"

1. Open a handle to Parent\OldName\Subkey

to create its corresponding KCB

2. Transactionally rename "OldName"

3. Open a handle to Parent\NewName\Subkey

4. Commit the transaction, leading to duplicate

KCBs of the subkey "NewName"

"Subkey"

KCB tree

CVE-2023-23420

"Parent"

1. Open a handle to Parent\OldName\Subkey

to create its corresponding KCB

2. Transactionally rename "OldName"

3. Open a handle to Parent\NewName\Subkey

4. Commit the transaction, leading to duplicate

KCBs of the subkey

5. Delete the subkey and discard one of the

KCBs; the other KCB now refers to freed

objects

"NewName"

"Subkey"

Demo

A taxonomy of bugs

10. Fuzzable

9. Greppable

8. Obvious, local bugs

7. Information disclosure

6. Local bugs of omission

5. Cross-function bugs

4. Concurrency-related bugs

🥉 Object-lifetime bugs

🥈 Cross-feature bugs

🥇 Logic bugs

Cross-feature bugs

● The Windows NT 3.1 registry design was elegant, but simple

● Many mechanisms introduced later are "hacks" addressing specific problems:
○ Predefined keys

○ Symbolic links

○ Registry virtualization

○ KTM and lightweight transactions

○ Differencing hives and layered keys

● So how do they all work together?

Predefined
Keys

Transactions
Layered

Keys

Symbolic
Links

Registry
Virtualization

Cross-feature bugs

● A bit of a hyperbole – they are not actively hostile

● However, they are often unaware of each others' corner cases and may trip

over them:
○ Reimplementing a standard operation without porting all of the checks from the canonical one

○ Accessing weird keys / key placeholders indirectly, where directly wouldn't have been possible

○ Forgetting to opt out of specific options, which are opt-in by default and not immediately

obvious

Examples

A taxonomy of bugs

10. Fuzzable

9. Greppable

8. Obvious, local bugs

7. Information disclosure

6. Local bugs of omission

5. Cross-function bugs

4. Concurrency-related bugs

🥉 Object-lifetime bugs

🥈 Cross-feature bugs

🥇 Logic bugs

Logic bugs

● The crown jewel of software vulnerabilities 👑
○ Can be very deep and hard to find with automation

○ Often 100% reliable

○ Typically don't involve memory corruption and are easier to exploit

● Particularly relevant to the registry
○ Implements a substantial amount of high-level logic

○ Responsible for enforcing its own security access checks

○ Manages sensitive system configuration that is attractive both to leak and corrupt

○ Shared by both restricted and highly-privileged processes in the system

Case study: symbolic links

● Symbolic links with source/destination across different privilege levels are

dangerous, as they can lead to confused deputy problems

● This has been previously the case in Windows XP and earlier versions

● Addressed in Windows Server 2003 and later with hive trust classes

Predefined keys

● A special type of key introduced for compatibility reasons in Windows NT 3.5
○ Redirects a key to a controlled HKEY_* top-level key on the Registry API level

○ Used to redirect two Perflib-related keys to their HKEY_PERFORMANCE_* counterparts

● Conceptually equivalent to symbolic links, but not subject to trust classes

● More restricted than regular symlinks:
○ Source: a hive that grants write access to its backing file

○ Destination: one of ~10 possible top-level keys

Plan of attack

1. HKCU\Software\Microsoft\EventSystem → HKEY_CURRENT_CONFIG

2. System Event Notification Service (svchost.exe) unknowingly sets a

permissive descriptor on HKCC, granting us write access

3. HKCC\Link → HKCR\TypeLib\{GUID}\2.0

4. Trigger the bug a second time to gain control over the COM object

5. Corrupt a COM object used by a System process, elevate privileges

Attacker's view

🌱
1. Plant

ntuser.man

🔁
2. Log out and

back in

🔗
3. Create
symlink

4. Log out and
back in

🔁

💥
5. Corrupt HKCR

6. Log out

⌨
7. Press special

shortcut

🏆
8. Elevated cmd

Demo

Predefined key timeline

Predefined key summary

● A completely undocumented feature lived in the format for almost 30 years

● Demonstrates the strengths of logic bugs
○ Unfuzzable

○ Breaks high-level security guarantees

● Requires comprehensive knowledge of the target for exploitation
○ Identifying the fundamental problem with the feature

○ Finding the right set of primitives

■ Binary control over HKCU via ntuser.man

■ A system service that performs "abusable" operations on HKCU

Conclusion

Takeaways

● The registry is a fascinating research target

● If you're a researcher: persistent analysis pays off
○ Fuzzing is often only scratching the surface

○ For some targets, the really good bugs come from a deep understanding of software

● If you're a vendor: some features shouldn't live forever
○ Legacy code is a security hazard and should be periodically reevaluated

○ Attack surface reduction and well-placed mitigations have an outsized impact on security

