Peeling Back the Windows Registry Layers:
A Bug Hunter's Expedition

L4
L
Mateusz Jurczyk
REcon, June 2024

The registry fundamentals

e A hierarchical database for storing system/application settings in Windows
e Essential concepts: hives, keys and values

e Built-in tools for management: Regedit.exe (GUI), Reg.exe (CLI)

e Documented Registry API for software developers

e Most of the implementation is in the kernel

A bit of history

e Firstintroduced in Windows 3.1 (1992) to replace INI files
e Current code and design directly rooted in Windows NT 3.1 (1993) and

Windows NT 4.0 (1996)
e Started out small, then extended and improved over the next 30 years

o Performance improvements: faster subkey lookups, optimized key renaming

o Backwards compatibility: registry virtualization
o New features: big values, registry callbacks, transactions, application hives, differencing hives

! Registry Editor

Registry Edit View Help

=2} My Computer Name | Data

{:] HKEY_CLASSES_ROOT [ab] (Default) (value not set)
= HKEY_CURRENT_USER 28] CompletionChar 0=00000000 (0)
- AppEvents 28] DefaultColor 0x00000000 (0)

- Corsole 8] EnableEstensions 0x00000001 (1
(] Control Panel &8 m

-] Keyboard Layout
=1 Software
B e oo Rogsty Egtor B3|
{17 Clock S
423 Command Processor @;} Microsoft (R) Reaistry Editor
#-{_] File Manager Version 4.0 (Build 1381: Service Pack 1]
-] Intemet Explorer Copyright (C) 1981-1996 Microsoft Corp.
{1 NetDDE
{1 Notepad
~{_1 Ntbackup This product is licensed to:
{1 RegEdt32 test
-] Schedule+
- Windows
{2 Windows Help
- Windows NT
-(_] UNICODE Program Groups
-] HKEY_LOCAL_MACHINE
-1 HKEY_USERS
- HKEY_CURRENT_CONFIG
{7 HKEY_DYN_DATA

Memory Available to Windows NT: 130,420 KB

My ComputeriH KEY=CUHRENT =USEH\Soltware'\Microsoft\Command Processor

B Registry Editor
Eile Edit View Favorites Help
Computer\HKEY_CURRENT_USER\Control Panel\Cursors

~ M Computer
> HKEY_CLASSES_ROOT
v HKEY_CURRENT_USER
> AppEvents
> Console
v Control Panel
> Accessibility
> Appearance
> Bluetooth
Colors
Cursors
> Desktop
> Input Method
> International
Keyboard
Mouse
NotifylconSettings
Personalization
PowerCfg
Quick Actions
Sound
> TimeDate
UnsupportedHardwareNotificationCache
Environment
EUDC
Keyboard Layout
Network
Printers
Software

RV

VoV e Ve Ve N

Name

25(Default)

ab| AppStarting
ab| Arrow

2| ContactVisualiza...

ab|Crosshair

#%)CursorBaseSize

%) GestureVisualizat...

3_'_’] Hand
ab)Help
ab||Beam
25]No
ab|NWPen
24|Scheme Source
ab]sizeAll
ab)SizeNESW
i'_'.’]SizeNS
2b]SizeNWSE
ab)SizeWE

)

abJUpArrow
2b|Wait

Type

REG_SZ
REG_SZ
REG_SZ
REG_DWORD
REG_SZ
REG_DWORD
REG_DWORD
REG_SZ
REG_SZ
REG_SZ
REG_SZ
REG_SZ
REG_DWORD
REG_SZ
REG_SZ
REG_SZ
REG_SZ
REG_SZ
REG_SZ
REG_SZ

Data

Windows Default
C:\Windows\cursors\aero_working.ani
C:\Windows\cursors\aero_arrow.cur
0x00000001 (1)

0x00000020 (32)

0x0000001f (31)
C:\Windows\cursors\aero_link.cur
C:\Windows\cursors\aero_helpsel.cur

C:\Windows\cursors\aero_unavail.cur
C:\Windows\cursors\aero_pen.cur
0x00000002 (2)
C:\Windows\cursors\aero_move.cur
C:\Windows\cursors\aero_nesw.cur
C:\Windows\cursors\aero_ns.cur
C:\Windows\cursors\aero_nwse.cur
C:\Windows\cursors\aero_ew.cur
C:\Windows\cursors\aero_up.cur
C:\Windows\cursors\aero_busy.ani

Lines of decompiled kernel code

100000
90000
80000
70000
60000
50000

40000

Lines of code

30000

20000

10000

Windows version

Registry as an attack surface: the good

¢ Ability to load custom hives as an unprivileged user
& Access to sensitive data: system configuration, user credentials

Error prone parts of the design: self-healing, size-bound, heavily optimized
¢ A mixture of complex C code from different eras: from 30 years ago to now

¢ A variety of potential bug classes and attack vectors

Registry as an attack surface: the bad*

Very hard to fuzz effectively
Source code not available, and documentation is poor for specific areas
Public symbols incomplete, lack some type definitions

Lots of reverse engineering required: significant time and energy investment

Not all bugs are good, as usual

How the research started

e Started in May 2022 as a test of my new coverage-based fuzzer for the
Windows kernel

e Found one bug: CVE-2022-35768

o Windows Kernel multiple memory problems when handling incorrectly formatted security

descriptors in registry hives

e The initial success prompted me to have a deeper look into the kernel

e It quickly turned into a challenge to reverse and review all of the code...

The research process

Reverse engineer

Choose a self-contained part of the registry
implementation and try to get it as close to
readable C-like code as possible.

Understand the logic

Try to understand the purpose,
assumptions, guarantees and underlying
intentions of the code.

Test, reproduce, report bugs

Test any discovered bugs, create reliable
reproducers, write up detailed reports and
submit them to Microsoft.

Compare with prior
knowledge
Consider if the behavior of the feature is

consistent with what we already know
about the registry.

Research progression: major features

How it went

e The audit lasted for ~20 months between May 2022 — December 2023

e Results:

o 39 issues reported in the Project Zero bug tracker (under a 90 day deadline)
o 20 issues reported outside the tracker (no deadline, low/unclear severity)

o =50 CVEs assigned by Microsoft across 15 monthly bulletins

Bug classes

Windows Registry

File parsing

bugs

D~ Status v Restrict v Reported v Vendor v Product ¥ Finder v Summary + Labels v

2295 Fixed - 2022-May-11 Microsoft Kemnel mjurczyk Windows Kernel use-after-free due to refcount overflow in registry hive security descriptors CCProjectZeroMembers

2297 Fixed - 2022-May-17 Microsoft Kernel mjurczyk Windows Kernel invalid read/write due to unchecked Blink cell index in root security descriptor CCProjectZeroMembers

2299 Fixed - 2022-May-20 Microsoft Kernel mjurczyk Windows Kernel multiple memory problems when handling incorrectly formatted security descriptors in registry hives CCProjectZeroMembers
2318 Fixed - 2022-Jun22 Microsoft Kernel mjurczyk Windows Kernel integer overflows in registry subkey lists leading to memory corruption CCProjectZeroMembers

2330 Fixed = 2022-Jul8 Microsoft Kernel mjurczyk Windows Kernel registry use-after-free due to bad handling of failed reallocations under memory pressure CCProjectZeroMembers

2332 Fixed - 2022-Ju11 Microsoft Kernel mjurczyk Windows Kernel memory corruption due to type confusion of subkey index leaves in registry hives CCProjectZeroMembers

2341 Fixed - 2022-Aug3 Microsoft Kemel mjurczyk Windows Kernel multiple memory corruption issues when operating on very long registry paths CCProjectZeroMembers

2344 Fixed -_ 2022-Aug-5 Microsoft Kernel mjurczyk Windows Kernel out-of-bounds reads and other issues when operating on long registry key and value names CCProjectZeroMembers

2359 Fixed - 2022-Sep22 Microsoft Kemel mjurczyk Windows Kernel use-after-free due to bad handling of keys in NtNotifyCl

2366 Fixed - 2022-0ct6 Microsoft Kemel mjurczyk Windows Kernel memory dueto handling of keys in registry vir cc

2369 Fixed - 2022-0ct-13 Microsoft Kemel mjurczyk Windows Kernel use-after-free due to dangling registry link node under paged pool memory pressure CCProjectZeroMembers

2375 Fixed - 2022-0ct25 Microsoft Kernel mjurczyk Windows Kernel multiple issues in the key feature of registry vir

2378 Fixed - 2022-0ct:31 Microsoft Kemel mjurczyk Windows Kernel registry SID table poisoning leading to bad locking and other issues CCProjectZeroMembers

2379 Fixed = 2022-Nov-2 Microsoft Kernel mjurczyk Windows Kernel allows deletion of keys in virtualizable hives with KEY_READ and KEY_SET_VALUE access rights CCProjectZeroMembers
2389 Fixed - 2022-Nov-30 Microsoft Kernel mjurczyk Windows Kernel registry virtualization i ible with i leading to i hive state and memory corruption CCProjectZeroMembers
2392 Fixed o 2022-Dec-7 Microsoft Kernel mijurczyk Windows Kernel multiple issues with subkeys of transactionally renamed registry keys CCProjectZeroMembers

2394 Fixed - 2022-Dec-14 Microsoft Kerel mjurczyk Windows Kernel multiple issues in the prep: it phase of a ional registry key rename CCProjectZeroMembers

2408 Fixed == 2023-Jan-13 Microsoft Kernel mijurczyk Windows Kernel insufficient validation of new registry key names in cc

2410 Fixed - 2023Jan19 Microsoft Kemel mjurczyk Windows Kernel CmpCleanupLightWeightPrepare registry security descriptor refcount leak leading to UAF CCProjectZeroMembers

2418 Fixed - 2023-Jan31 Microsoft Kernel mjurczyk Windows Kernel disclosure of kernel pointers and uninitialized memory through registry KTM ion log files cC

2419 Fixed - 2023Feb2 Microsoft Kemel mjurczyk Windows Kernel out-of-bounds reads when operating on invalid registry paths in CmpDoReDoCreateKey/CmpDoReOpenTransKey CCProjectZeroMembers
2433 Fixed = 2023Mar7 Microsoft Kemel mjurczyk Windows Kernel KTM registry ions may have ic outcomes C

2445 Fixed — 2023-Apr-19 Microsoft Kernel mjurczyk Windows Kernel arbitrary read by accessing keys through dif ing hives C

2446 Fixed = 2023-Apr20 Microsoft Kernel mjurczyk Windows Kernel may reference unbacked layered keys through registry virtualization CCProjectZeroMembers

2447 Fixed -_— 2023-Apr-27 Microsoft Kernel mjurczyk Windows Kernel may reference rolled-back keys through ing hives

2449 Fixed - 2023-May-2 Microsoft Kernel mjurczyk Windows Kernel renaming layered keys doesn't reference count security descriptors, leading to UAF CCProjectZeroMembers

2452 Fixed - 2023-May-10 Microsoft Kernel mjurczyk Windows Kernel CmDeleteLayeredKey may delete predefined tombstone keys, leading to security descriptor UAF CCProjectZeroMembers
2454 Fixed - 2023-May-15 Microsoft Kemel mjurczyk Windows Kernel out-of-bounds reads due to an integer overflow in registry .LOG file parsing CCProjectZeroMembers

2456 Fixed - 2023May-22 Microsoft Kemel mjurczyk Windows Kernel partial success of registry hive log recovery may lead to inconsistent state and memory corruption CCProjectZeroMembers
2457 Fixed - 2023May-31 Microsoft Kerel mjurczyk Windows Kernel doesn't reset security cache during self-healing, leading to refcount overflow and UAF CCProjectZeroMembers

2462 Fixed --— 2023-Jun-26 Microsoft Kernel mjurczyk Windows Kernel passes user-mode pointers to registry callbacks, leading to race and memory ipt ccl

2463 Fixed - 2023Jun27 Microsoft Kemel mjurczyk Windows Kernel paged pool memory di in Vrp

2464 Fixed — 2023-Jun-27 Microsoft Kernel mjurczyk Windows Kernel out-of-bounds reads and paged pool memory in ion CC

2466 Fixed - 2023-Jul-7 Microsoft ~ Kernel mjurczyk Windows Kernel containerized registry escape through integer overflows in i and other cel

2479 Fixed e 2023-Aug-10 Microsoft Kernel mijurczyk Windows Kernel time-of-check/time-of-use issue in verifying layered key security may lead to information disclosure from privileged registry keys CCProjectZeroMembers
2480 Fixed - 2023-Aug22 Microsoft Kemel mjurczyk Windows Kernel bad locking in registry virtualization leads to race condif cc

2492 Fixed — 2023-Oct-6 Microsoft Kernel mjurczyk Windows registry predefined keys may lead to confused deputy problems and local privilege escalation CCProjectZeroMembers

https://bugs.chromium.org/p/project-zero/issues/list?g=finder%3Amjurczyk%20opened%3E2022-05-01%200pened%3C2024-01-01&can=1

https://bugs.chromium.org/p/project-zero/issues/list?q=finder%3Amjurczyk%20opened%3E2022-05-01%20opened%3C2024-01-01&can=1

Microsoft Windows Registry Low/Unclear Severity Bugs

This repository contains the descriptions and proof-of-concept exploits of 20 issues with low or unclear security impact found in the Windows
Registry. They were reported to Microsoft between November 2023 and January 2024. Six of them were fixed by the vendor in the March 2024
Patch Tuesday, while the other fourteen were closed as WontFix/vNext. The bugs were identified during my registry research in 2022-2024,
alongside the 39 vulnerabilities filed in the Project Zero bug tracker with the 90-day deadline.

For more information about the research, please see the blog post series starting with The Windows Registry Adventure #1: Introduction and
research results, as well as the Exploring the Windows Registry as a powerful LPE attack surface presentation from BlueHat Redmond 2023. At
the time of this writing, further talks about the registry are planned this year at OffensiveCon, CONFidence and REcon.

The issues are summarized in the table below:

1D Title Status CVE

Windows Kernel out-of-bounds read of key node security in . A CVE-2024-
Fixed in March 2024

CmpValidateHiveSecurityDescriptors when loading corrupted hives 26174

CVE-2024-

Windows Kernel out-of-bounds read when validating symbolic links in CmpCheckValueList Fixed in March 2024 Sci7e

Windows Kernel pool-based buffer overflow when parsing deeply nested key paths in

WontFix/vNext
CmpComputeComponentHashes

Windows Kernel allows the creation of stable subkeys under volatile keys via registry . . CVE-2024-
Fixed in March 2024

transactions 26173

Windows Kernel lightweight transaction reference leak in CmpTransReferenceTransaction WontFix/vNext

Windows Kernel pool-based out-of-bounds read in CmpRmReDoPhase when restoring

T 2 WontFix/vNext
registry transaction logs

Windows Kernel NULL pointer dereference in CmpLightWeightPrepareSetSecDescUoW WontFix/vNext

Windows Kernel infinite loop in CmpDoReOpenTransKey when recovering a corrupted vNext (fixed in Insider

transaction log Preview)

Windows Kernel NULL pointer dereference in NtDeleteValueKey WontFix

Windows Kernel user-triggerable crash in CmpKeySecuritylncrementReferenceCount via

S - WontFix/vNext
unreferenced security descriptors

Windows Kernel memory leak in VrpPostOpenOrCreate when propagating error

https://qgithub.com/googleprojectzero/pOtools/tree/master/\WWinRegl owSeverityBugs

https://github.com/googleprojectzero/p0tools/tree/master/WinRegLowSeverityBugs

Lessons learned

e Software continues to have bugs %3

e Different bugs lie at different points on the code understanding scale

e Security research is akin to peeling back the layers of an onion {

A taxon(ion)omy of bugs

Level of context required
(easiest to hardest to find?)

/

A taxonomy of bugs

AN

! /

/

—

/ w

Logic bugs

oL

@ Cross-feature bugs

% Object-lifetime bugs

4. Concurrency-related bugs
5. Cross-function bugs

6. Local bugs of omission

7. Information disclosure

8. Obvious, local bugs

9. Greppable

10. Fuzzable

A taxonomy of bugs

A 4

Logic bugs
% Cross-feature bugs
% Object-lifetime bugs
4. Concurrency-related bugs

5. Cross-function bugs

AN

/ 6. Local bugs of omission

__— 7. Information disclosure

8. Obvious, local bugs

0 Greppable

10. Fuzzable

4 iy e

Fuzzable bugs

e Virtually zero knowledge of the target required, only its behavior and

examples of inputs:

o How to build it (optional)
o How to run it and pass input data

o How it fails/crashes

Registry fuzzing — easy in theory

e Hives are a binary format
e Input samples readily available in
Windows

e Initial harness easy to write
o ReglLoadAppKey + RegCloseKey
e Simple bug detection

o Catching BSoDs / unexpected reboots

Registry fuzzing — hard in practice

e Hives are a binary format
e Input samples readily available in
Windows

e Initial harness easy to write
o ReglLoadAppKey + RegCloseKey
e Simple bug detection

o Catching BSoDs / unexpected reboots

Registry fuzzing — hard in practice

e Structurally very simple \
'_l'H‘VeS‘a'Fe‘a‘bm'a'Fy‘fe*ma"f' ' e Most interesting bugs occur on
e Input samples readily available in a higher level

Windows e Bitflipping can only trigger the

» _ lowest hanging fruit
e Initial harness easy to write /

o ReglLoadAppKey + RegCloseKey
e Simple bug detection

o Catching BSoDs / unexpected reboots

Registry fuzzing — hard in practice

: : : ~ _ _
o—input-samplesreadity-avaitableh Default hives don't contain any
Windews interesting/non-standard constructs

e Initial harness easy to write
o ReglLoadAppKey + RegCloseKey
e Simple bug detection

o Catching BSoDs / unexpected reboots

Registry fuzzing — hard in practice

i b F
| | | " e blen
Windows e Thisonl N
y covers a very small part
e—irtatHharress—easy-to-wrie of the registry
—-RegtoadAppkey+RegSlosekey e Dozens of other operations
e Simple bug detection required to properly test the code

o Catching BSoDs / unexpected reboots

Registry fuzzing — hard in practice

it .

—-RegtoadAppkey+RegSlosekey
_ _ //Most registry bugs don't trigger hard crashes
+—Simple-bug-deteetion : :
e Hive memory corruption
e Logic bugs

Registry fuzzing — hard in practice

e This might explain why only 1 bug was fuzzed out

o Miscalculation of a security descriptor buffer size
o Trivial leak of OOB kernel pool data into the hive file

o Likely wouldn't have been found manually

e ... and why the other 49 survived for so long

CVE-2022-35768

RtlLengthSecurityDescriptor(

e\

Header

Owner

Group

Sacl

Dacl

N

buffer size = sum of components

~

CVE-2022-35768

RtlLengthSecurityDescriptor(

RtlLengthSecurityDescriptor(

—

Header

Own

cr - Group

S

acl

Dacl

) = X too large

Header

Owner

] Group

Sacl]

Dacl

) = X too small

A taxonomy of bugs

Logic bugs

]

@ Cross-feature bugs
% Object-lifetime bugs
4. Concurrency-related bugs

5. Cross-function bugs

| 6. Local bugs of omission

__— 7. Information disclosure

8. Obvious, local bugs

9. Greppable

; 9

10. Fuzzable

Patterns for grepping

e General:

o Buffer operations: calls to memcpy etc.

o Dynamic allocations: calls to malloc etc.

o Integer arithmetic: especially next to allocations, on 16-bit types etc.
e Kernel-specific:

o Pointer probing: ProbeForRead / ProbeForWrite calls, references to MmUserProbeAddress
e Registry-specific:

o Calls to the hive allocator: HvAllocateCell, HvReallocateCell, HvFreeCell

o Operating on key handles: references to CmKeyObjectType

Example: long strings

e Under certain circumstances®, registry paths may be over 64 KiB long

e \Windows stores strings, including registry paths, in UNICODE_STRING
o 16-bit Length and MaximumLength fields
e Manually calculating the unicode buffer size may indicate insecure code

e Relatively easy to grep for 16-bit arithmetic in x86 assembly:

(add|sub)\s+[a-z][xi],

Examples %,

PAGE : 060000014 07F 86CF
PAGE : 000000014087F 88D2
PAGE : 00000001407F 86D6
PAGE : 0000000614087F 06D9
PAGE : 0000000614687F 86DC
PAGE : 060000014 07F 86DF
PAGE : 000000014087F 8BES
PAGE : 000000014 07F 8BE9
PAGE : 000000014087F BED
PAGE : 000000014087F 06F 0
PAGE : 00000001407F 00F 4
PAGE : 000000014087F 00F7

mov
mov
novzx
add
test
mov
cmovz
add
add
novzx
mov
call

ecx, rod ; PoolType
[rbp+var_48.Buffer], rax
eax, dx

ax, ax

r8d, r8d

r8d, 'bNHC® ; Tag

ax, dx

ax, 12h

ax, [rbx]

r15d, ax

edx, r15d ; NumberOfBytes
ExAllocatePoolWithTag

PAGE : 00000001487F2039
PAGE : 000000014087F203D
PAGE : 000000014087 F2042
PAGE : 000000014087F2046
PAGE : 000000014087 F204C
PAGE : 60000001487F2050
PAGE : 000000014087F2053
PAGE : 000000014087F2057

movzx
mov
add
mov
add
movzx
mov
call

eax, word ptr [r15]

ecx, 1 ; PoolType

ax, 2

r8d, ‘bNHC® ; Tag

ax, [rbp+DestinationString.Length]
edx, ax ; Number0fBytes

[rbp+RemainingPath.MaximumLength], dx
ExAllocatePoolWithTag

CmRealKCBToVirtualPath (CVE-2022-37990)

CmpVEExecuteVirtualStoreParselLogic (CVE-2022-38038)

PAGE : 00000001407 7B34D
PAGE : 00000601407 7B350
PAGE : 008000014087 7B355
PAGE : 000000014087 7B35B

movzx
mov
nov
call

edx, bp ; NumberOfBytes
ecx, 1 ; PoolType
r8d, '66MC’ ; Tag

ExAllocatePoolWithTag

PAGE : 0000000140880C8BC
PAGE : 800000014088 0C8BF
PAGE : 860000614880C8C2
PAGE : 8000000140880C8C6
PAGE : 0600000140880C8CA
PAGE : 000000014880C8CD
PAGE : 860000014880C8D 0O
PAGE : 0000000140880C8D3
PAGE : 8000000140880C8D8
PAGE : 060000014088 0C8DE

movzx
mov
add
mouzx
add
movzx
lea
mov
mov
call

eax, word ptr [rdx]

rdi, r8

ax, 2

ecx, word ptr [rsi+2]

cx, ax

edx, cx ; NumberOfBytes
ecx, [rbx+1] ; PoolType
[r8+2], dx

r8d, ‘geRU’ Sl

ag
ExAllocatePoolWithTag

CmpDoWritethroughReparse (CVE-2022-38039)

VrpBuildKeyPath (CVE-2023-36576)

A taxonomy of bugs

A 4

Logic bugs
% Cross-feature bugs
% Object-lifetime bugs

4. Concurrency-related bugs

5. Cross-function bugs

/ 6. Local bugs of omission

__— 7. Information disclosure

8. Obvious, local bugs

0 Greppable

10. Fuzzable

AN

/

Obvious, local bugs

e Disclaimer: often "obvious" only after hours of reversing

e Typical root causes:

o Evident out-of-bounds array accesses
o Incorrect allocation size
o Incorrect return value

o Incorrect reference counting

e Most frequent bug class in the research: 13 of 50

Example (CVE-2022-34707)

BOOLEAN CmpCheckAndFixSecurityCellsRefcount(CMHIVE *CmHive) {

for (int i = @; i < CmHive->SecurityCount; i++) {
CM_KEY_SECURITY_CACHE_ENTRY *CacheEntry = &CmHive->SecurityCache[i];
CM_KEY_SECURITY *SecurityNode = CmHive->Hive.GetCellRoutine(CmHive, CacheEntry->Cell);

if (SecurityNode->ReferenceCount < CacheEntry->CachedSecurity->RealRefCount) {
SecurityNode->ReferenceCount = CacheEntry->CachedSecurity->RealRefCount;

}

Example (CVE-2022-34707)

What about inadequately
large refcounts?

BOOLEAN CmpCheckAndFixSecurityCellsRefcount(CMHIVE *CmHive) {

for (int i = @; i < CmHive->SecurityCount; i++) {
CM_KEY_SECURITY_CACHE_ENTRY *CacheEntry = &CmHi ecurityCache[i];
CM_KEY_SECURITY *SecurityNode Ve->Hive.GetCellRoutine(CmHive, CacheEntry->Cell);

if (SecurityNode->ReferenceCount| < [ZacheEntry->CachedSecurity->RealRefCount) {
SecurityNode->ReferenceCount = CacheEntry->CachedSecurity->RealRefCount;

}

CVE-2022-34707

e The bug lead to a refcount integer overflow, and a security descriptor
use-after-free in the hive mapping

o Aregistry-specific memory corruption primitive that hasn't been explored before

e \With some work, it can be converted to a KASLR leak and arbitrary read/write

e For details, see my latest OffensiveCon talk on exploitation

https://www.youtube.com/watch?v=qllMa2UUPvY

Demo

A taxonomy of bugs

) 4

Logic bugs
¥ Cross-feature bugs
% Object-lifetime bugs
4. Concurrency-related bugs

5. Cross-function bugs

6. Local bugs of omission

! /

7. Information disclosure

8. Obvious, local bugs

0 Greppable

10. Fuzzable

/ w

Kernel information disclosure

e Disclosing uninitialized kernel stack/pool memory: partially filled arrays,
padding structure bytes etc.

e Could be fuzzable or greppable, but it's harder, hence its own category

o Never triggers a system crash, requires a dedicated detector (e.g. Bochspwn Reloaded)

o Doesn't stand out when reading the code

e Enables a local attacker to leak kernel addresses or other system secrets

)

Examples 3,

Issue 2418: Windows Kernel disclosure of kernel pointers and uninitialized memory through registry KTM transaction log files
Reported by mjurczyk@google.com on Tue, Jan 31, 2023, 3:43 PM GMT+1

Issue 2463: Windows Kernel paged pool memory disclosure in VrpPostEnumerateKey
Reported by mjurczyk@google.com on Tue, Jun 27, 2023, 10:53 AM GMT+2

e Issue 2418 (CVE-2023-28271)
o The kernel directly saved a kernel structure with pointers and padding bytes to a file
o Required the use of transactions and observing that the log files are user-readable
o Issue 2463 (CVE-2023-38140)
o In principle, a standard kernel memory disclosure bug

o Existed in a very specific code path, required layered keys and invoking a system call directly

Demo

A taxonomy of bugs

A 4

» Logic bugs
% Cross-feature bugs
% Object-lifetime bugs
4. Concurrency-related bugs
5. Cross-function bugs

6. Local bugs of omission

__— 7. Information disclosure

8. Obvious, local bugs

0 Greppable

10. Fuzzable

Local bugs of omission

e Bugs that are local in scope, but caused by something that is not in the code

e Require a different mindset to identify
o Consider whether a function does everything it should be doing in every code path
e (Good candidates:

o Missing bounds/correctness checks of some structure fields
o Missing handling of specific object types in generic functions
o Missing return value checks

o Missing state unwinding in error code paths

Example (CVE-2023-28248)

VOID CmpCleanupLightWeightUoWData(CM_KCB_UOW *UoW) {

switch (UoW->ActionType) {

/ H , Missing security
x Other action types... descriptor dereference

case UoWSetSecurityDescriptor:
CM_UOW_SET_SD_DATA *SecurityData = UoW->SecurityData;

+ CmpDereferenceSecurityNode(SecurityData->Hive, SecurityData->SecurityCell);
ExFreePoolWithTag(SecurityData, 'wUMC');
break:
}

Example (CVE-2023-28248)

e A functionality-neutral issue
e \Virtually impossible to find without careful analysis of the logic of the function

e Qutcome:

o The missing call leads to a leak of a single reference
o The security descriptor refcount is a uint32, and can be incremented multiple times

o There is no overflow protection, and once the value overflows, we get a UAF

e The proof-of-concept takes ~20 hours to complete

Demo

A taxonomy of bugs

S]

Logic bugs
% Cross-feature bugs
% Object-lifetime bugs
4. Concurrency-related bugs
5. Cross-function bugs

__— 6. Local bugs of omission

__— 7. Information disclosure

8. Obvious, local bugs

0 Greppable

10. Fuzzable

Cross-function bugs

e Bugs that are rooted in (mis)interactions between two or more functions
e Examples observed in the registry:

o Assumption that certain internal functions never fail
o Assumption that a failed call implies no internal state change
o Confusion about what success/failure even means

o Using the wrong function for the wrong task

Example (CVE-2023-23423)

NTSTATUS CmpCommitRenameKeyUoW(CM_KCB_UOW *UoW) {
//

if (!CmpAddSubKeyEx(Hive, ParentKey, NewNameKey) ||
ICmpRemoveSubKey(Hive, ParentKey, OldNameKey)) {
- CmpFreeKeyByCell(Hive, NewNameKey) ;
+ HvFreeCell(Hive, NewNameKey) ;
return STATUS_INSUFFICIENT_RESOURCES;
} Deep vs. shallow free }

/7

Successful rename case

"OldName" key

N

Class

SecurityDescriptor

Value list

Value

Value

Value

Successful rename case

"OldName" key

"NewName" key

S————\

Class

SecurityDescriptor

Value list

Value

Value

Value

Successful rename case

"NewName" key

SecurityDescriptor

Value list

Value

Value

Value

Failed rename case (correct)

"OldName" key

N

Class

SecurityDescriptor

Value list

Value

Value

Value

Failed rename case (correct)

"OldName" key

"NewName" key

S————\

Class

SecurityDescriptor

Value list

Value

Value

Value

Failed rename case (correct)

"OldName" key

_

Class SecurityDescriptor Value list

Value Value Value

Failed rename case (buggy)

"OldName" key

N

Class

SecurityDescriptor

Value list

Value

Value

Value

Failed rename case (buggy)

"OldName" key

"NewName" key

P\

Class

SecurityDescriptor

Value list

Value

Value

Value

Failed rename case (buggy)

"OldName" key

A taxonomy of bugs

Logic bugs

®©¢

Cross-feature bugs

% Object-lifetime bugs

4. Concurrency-related bugs

AW\

g

/

———

/

5. Cross-function bugs

6. Local bugs of omission
7. Information disclosure
8. Obvious, local bugs

9. Greppable

10. Fuzzable

Race conditions

e Bugs that require an understanding of how global state can be manipulated in
different code paths at the same time

e General problem types:

o Missing synchronization of access to a resource
o Bad synchronization: shared vs. exclusive access
o Bad synchronization: locking the wrong thing (two registry reports)

o Interactions with user-mode memory: double fetches etc. (one registry report)

Example (CVE-2023-38141)

Issue 2462: Windows Kernel passes user-mode pointers to registry callbacks, leading to race conditions and memory corruption .
GO [l
Reported by mjurczyk@google.com on Mon, Jun 26, 2023, 3:13 PM GMT+2 EgQiditubty

The Windows operating system exposes a documented kernel API named Registry Callbacks. It allows drivers and the kernel itself to
register callback functions using CmRegisterCallbackEx, which then get invoked every time a registry operation takes place in the
system. The callbacks are provided with full information about the type and context of the operations through the REG_NOTIFY_CLASS enum
and one of the many corresponding REG_*_INFORMATION structures. Based on this data, the callbacks can decide whether to act on it - for
example log the operation, block it, adjust the output data, or intercept it and bypass the Configuration Manager completely. One
obvious use case for this interface is antivirus-like software, but it is also utilized by the core Windows kernel as well, e.g. to
implement the namespace redirection feature of the VRegDriver (part of containerized registry support for app/server silos), or for ETW
logging of registry activity.

There is a fundamental weakness in the way the callback support is currently implemented: many of the operation-specific structures
contain pointers to input/output data, and in some cases, these fields point directly to user-mode buffers passed to the registry
syscalls as arguments by client applications. This fact is documented in the specification of the registry callback function [1].
According to MSDN, input buffer pointers are safe to use because they are captured by the kernel before being passed to the callbacks on
modern versions of Windows (8 and newer), while output buffer pointers are always potentially unsafe and must be accessed within
try/except blocks and/or captured in kernel-mode memory before passing them to other kernel functions.

However, there are two issues here:

Registry callbacks?

Kernel-mode

-{ Pre callbacks }

Registry
operation

H Post callbacks }

exit syscall

exit syscall

User-mode

enter syscall

[Client program }

{ Client program }

Operating on input/output pointers

Buffer type = Windows Buffer pointer Safe for callback Safe to pass to system routines (such as
version passed to callback routine to directly ZwOpenKey)?
routine access?
User-mode Windows 8 Points to captured Yes Yes
input and later data.
User-mode Windows 7 Points to captured No. Must read No. Must allocate kernel memory, copy data
input and earlier data or original under try/except. from the original buffer under try/except, and
user-mode buffer. pass the copied data to the system routine.
User-mode All Points to original No. Must write No. Must allocate kernel memory, pass kernel
output user-mode buffer. under try/except. memory to the system routine, and copy the
results back to the original buffer under
try/except.
Kernel-mode All Points to original Yes Yes
input and kernel-mode buffer.
output

Operating on input/output pointers

Problem #1: untrue for some operations:

user-mode buffer.

User-mode All No. Must write

output

Points to original

user-mode buffer. under try/except.

Kernel-mode All Yes
input and

output

Points to original
kernel-mode buffer.

Buffer type = Windows Buffer pointer Safe for cal Setinf ik
version passed to callback routine to ¢ i etinformation ey
routine e QueryMultipleValueKey
User-mode Windows 8 Points to captured Yes
input and later data.
User-mode Windows 7 Points to captured No. Must read No. Must allocate kernel memory, copy data
input and earlier data or original under try/except. from the original buffer under try/except, and

pass the copied data to the system routine.

No. Must allocate kernel memory, pass kernel
memory to the system routine, and copy the
results back to the original buffer under
try/except.

Yes

Operating on input/output pointers

Buffer type

User-mode
input

User-mode
input

User-mode
output

Kernel-mode
input and
output

Windows
version

Windows 8
and later

Windows 7

and earlier

All

All

Problem #1: untrue for some operations
e SetInformationKey
e QueryMultipleValueKey

Buffer pointer Safe for cal
passed to callback routine to ¢
routine

Points to captured Yes

data.

Points to captured No. Must read No. Must allocate kernel memory, copy data

data or original under try/except. from the original buffer under try/except, and

user-mode buffer. pass the copied data to the system routine.

Points to original No. Must write No. Must allocate kernel memory, pass kernel

user-mode buffer. under try/except. memory to the system routine, and copy the
results back to the original buffer under

Problem #2: documented, but surprising

Points to original - Yes |- ayen for Windows kernel developers
kernel-mode buffer.

A taxonomy of bugs

Logic bugs

®©¢

Cross-feature bugs

3 Object-lifetime bugs

AN

g

/

———

/

4. Concurrency-related bugs
5. Cross-function bugs

6. Local bugs of omission

7. Information disclosure

8. Obvious, local bugs

9. Greppable

10. Fuzzable

Obiject lifetime bugs

e Bugs that require understanding of how objects are created, managed and

destroyed in time
o Temporal violations, typically use-after-free
e In registry, a key's lifetime may be hard to reason about
o Referenced by a handle in the period between RegOpenKey and RegCloseKey
o Within that time, many things can happen:
m The key can be renamed / deleted

m Its parent key can be renamed

m The underlying hive can be unloaded

Key lifetime challenges

e Challenge 1: renaming keys (NtRenameKey)

o Very complex, combines the delete + create operation in one
e Challenge 2: uncommitted transactions

o Operations aren't atomic; an intermediate state gets exposed that had previously been hidden
e Put the things together: renaming + transactions = Schrodinger's key 48

o Asingle key is simultaneously known by two different names, and its subkeys by two paths

o The Windows NT-era registry was not designed for this

Examples

Issue 2392: Windows Kernel multiple issues with subkeys of transactionally renamed registry keys
Reported by mjurczyk@google.com on Wed, Dec 7, 2022, 11:24 AM GMT+1

Issue 2394: Windows Kernel multiple issues in the prepare/commit phase of a transactional registry key rename
Reported by mjurczyk@google.com on Wed, Dec 14, 2022, 5:23 PM GMT+1 Project Member

Issue 2408: Windows Kernel insufficient validation of new registry key names in transacted NtRenameKey
Reported by mjurczyk@google.com on Fri, Jan 13, 2023, 2:12 PM GMT+1

All reports fixed collectively in March 2023 by disabling transacted renames

CVE-2023-23420

1. Open a handle to Parent\OldName\Subkey | KCB tree

to create its corresponding KCB

v

"Parent"

CVE-2023-23420

1. Open a handle to Parent\OldName\Subkey
to create its corresponding KCB

2. Transactionally rename "OldName"

KCB tree

v

"Parent"

CVE-2023-23420

1. Open a handle to Parent\OldName\Subkey | KCB tree

to create its corresponding KCB

v

2. Transactionally rename "OldName" " "
Parent

3. Open a handle to Parent\NewName\Subkey

CVE-2023-23420

1. Open a handle to Parent\OldName\Subkey
to create its corresponding KCB

2. Transactionally rename "OldName"

3. Open a handle to Parent\NewName\Subkey

4. Commit the transaction, leading to duplicate
KCBs of the subkey

KCB tree

v

"Parent"

CVE-2023-23420

1. Open a handle to Parent\OldName\Subkey
to create its corresponding KCB

2. Transactionally rename "OldName"

3. Open a handle to Parent\NewName\Subkey

4. Commit the transaction, leading to duplicate
KCBs of the subkey

5. Delete the subkey and discard one of the
KCBs; the other KCB now refers to freed

objects

KCB tree

v

"Parent"
"NewName"
i "Subkey"

Demo

A taxonomy of bugs

Logic bugs

o€

Cross-feature bugs

AN

/

\

/

% Object-lifetime bugs

4. Concurrency-related bugs
5. Cross-function bugs

6. Local bugs of omission

7. Information disclosure

8. Obvious, local bugs

9. Greppable

10. Fuzzable

Cross-feature bugs

e The Windows NT 3.1 registry design was elegant, but simple

e Many mechanisms introduced later are "hacks" addressing specific problems:

o Predefined keys

o Symbolic links

o Registry virtualization

o KTM and lightweight transactions

o Differencing hives and layered keys

e So how do they all work together?

Predefined
Keys

Cross-feature bugs

e Abit of a hyperbole — they are not actively hostile

e However, they are often unaware of each others' corner cases and may trip

over them:
o Reimplementing a standard operation without porting all of the checks from the canonical one
o Accessing weird keys / key placeholders indirectly, where directly wouldn't have been possible
o Forgetting to opt out of specific options, which are opt-in by default and not immediately

obvious

Examples

Issue 2389: Windows Kernel registry virtualization incompatible with transactions, leading to inconsistent hive state and memory

corruption
Reported by mjurczyk@google.com on Wed, Nov 30, 2022, 3:50 PM GMT+1

Issue 2445: Windows Kernel arbitrary read by accessing predefined keys through differencing hives
Reported by mjurczyk@google.com on Wed, Apr 19, 2023, 3:20 PM GMT+2

Issue 2446: Windows Kernel may reference unbacked layered keys through registry virtualization
Reported by mjurczyk@google.com on Thu, Apr 20, 2023, 3:44 PM GMT+2

Issue 2447: Windows Kernel may reference rolled-back transacted keys through differencing hives
Reported by mjurczyk@google.com on Thu, Apr 27, 2023, 1:01 PM GMT+2

A taxonomy of bugs

/

—

/

Logic bugs
Cross-feature bugs
% Object-lifetime bugs

4. Concurrency-related bugs
5. Cross-function bugs

6. Local bugs of omission

7. Information disclosure

8. Obvious, local bugs

9. Greppable

10. Fuzzable

Logic bugs

e The crown jewel of software vulnerabilities &

o Can be very deep and hard to find with automation

o Often 100% reliable

o Typically don't involve memory corruption and are easier to exploit

e Particularly relevant to the registry

o Implements a substantial amount of high-level logic
o Responsible for enforcing its own security access checks
o Manages sensitive system configuration that is attractive both to leak and corrupt

o Shared by both restricted and highly-privileged processes in the system

Case study: symbolic links

e Symbolic links with source/destination across different privilege levels are
dangerous, as they can lead to confused deputy problems
e This has been previously the case in Windows XP and earlier versions

e Addressed in Windows Server 2003 and later with hive trust classes

B Registry Editor
Eile Edit View Favorites Help

Computer

v @ Computer
> HKEY_CLASSES_ROOT
> HKEY_CURRENT_USER
v HKEY_LOCAL_MACHINE

-7~ BCD00000000
- DRIVERS

- HARDWARE
> Bl SAM

"~ SECURITY

"~ SOFTWARE

"~ SYSTEM

Vo

Vo

Name

p< HKEY_USERS

> .DEFAULT
> S=1=5=18
Sz1=5:19
S

S-1-5-21-309235459-240059954-4066018515-1001
S-1-5-21-309235459-240059954-4066018515-1001_Classes

> 1 S-1-5-21-309235459-240059954-4066018515-1002
> S-1-5-21-309235459-240059954-4066018515-1002_Classes

> HKEY_CURRENT_CONFIG

Type

Data

Predefined keys

e A special type of key introduced for compatibility reasons in Windows NT 3.5

o Redirects a key to a controlled HKEY_* top-level key on the Registry API level
o Used to redirect two Perflib-related keys to their HKEY _PERFORMANCE_* counterparts

e Conceptually equivalent to symbolic links, but not subject to trust classes

e More restricted than regular symlinks:

o Source: a hive that grants write access to its backing file

o Destination: one of ~10 possible top-level keys

B Registry Editor
File Edit View Favorites Help

Computer

o

~ @ computer

> 7 HKEY_CLASSES_ROOT

>~ HKEY_CURRENT_USER

v © HKEY_LOCAL_MACHINE

BCD00000000
HARDWARE
SAM
SECURITY
SOFTWARE
SYSTEM

v HKEY_USERS

.DEFAULT
S-1-5-18
S-1-5-19
S-1-5-20

> S-1-5-21-309235459-240059954-4066018515-1001

> S-1-5-21-309235459-240059954-4066018515-1001_Classes

v 7 HKEY_CURRENT_CONFIG

Software
System

Name

Type

Data

Issue 2492: Windows registry predefined keys may lead to confused deputy problems and local privilege escalation .
. . (ol Code
Reported by mjurczyk@google.com on Fri, Oct 6, 2023, 11:44 AM GMT+2

In Windows Registry, predefined-handle keys are a special type of keys similar to symbolic links, but instead of transparently
redirecting to an arbitrary registry path, they redirect to an arbitrary predefined registry key (HKLM, HKCU, HKCR etc., see [1] for a
full list). The concept of symbolic links makes the system potentially prone to security bugs, in situations where a privileged process
(e.g. winlogon or a system service) operates on user-controlled keys. By abusing symbolic links, such processes could be tricked into
reading from or writing to a different key that they originally intended to, allowing a local attacker to elevate their privileges in
the system. For this reason, there is a mechanism in the Windows registry called "trust classes”, which prevents traversing symbolic
links originating from untrusted hives (such as user hives) pointing to trusted hives (such as global system hives). Internally, the
verification of this security boundary is implemented in the CmpOKToFollowLink kernel function.

The problem discussed in this report is the fact that predefined keys don't have a similar safety mechanism, which means that a local
user may redirect any key within their HKEY_CURRENT_USER hive to any of the possible predefined keys, including some system-wide ones.
This behavior may potentially allow crossing a security boundary, but successful exploitation depends on finding a privileged process
that opens a key inside HKCU and does something "interesting” with it. We have found one such candidate in the form of the System Event
Notification Service (SENS), which is implemented by the sens.dll library that also extensively calls into es.dll (probably standing for
Event System). This service gets notified about all user logon/logoff events in the system, and when that happens, a series of function
calls leads to es!CreateEventSystemKey. This routine opens the HKCU\Software\Microsoft\EventSystem key in the hive of the user that is
just logging in, and sets its security descriptor to a very permissive DACL which grants the user full access (KEY_ALL_ACCESS) to the
key and all of its subkeys (the specific DACL string is formatted in es!InitializeStringSecurityDescriptorForEventSystemKey).

Plan of attack

1. HKCU\Software\Microsoft\EventSystem — HKEY CURRENT_CONFIG

2. System Event Notification Service (svchost.exe) unknowingly sets a
permissive descriptor on HKCC, granting us write access

3. HKCC\Link - HKCR\TypeLib\{GUID}\2.0

4. Trigger the bug a second time to gain control over the COM object

5. Corrupt a COM object used by a System process, elevate privileges

Attacker's view

__

1. Plant
ntuser.man

5. Corrupt HKCR

2. Log out and 3. Create
back in symlink
_________ —_—————
6. Log out 7. Press special

shortcut

“

4. Log out and
back in

8. Elevated cmd

Demo

Predefined key timeline

27 July 1993 27 May 2024
Windows NT 3.1 release Today
NT3.1 Windows NT 3.5 -4.0
September 1994 - June 2002
Windows 2000
February 2000 - July 2010
Windows XP
October 2001 - April 2014 11 July 2023

Windows Vista Patch Tuesday
January 2007 - April 2017

Windows 7
October 2009 - January 2020

Windows 8.x
October 2012 - January 2023

Windows 10
July 2015 - July 2023

Windows
11

Vulnerable Not affected

Predefined key summary

e A completely undocumented feature lived in the format for almost 30 years

e Demonstrates the strengths of logic bugs

o Unfuzzable

o Breaks high-level security guarantees

e Requires comprehensive knowledge of the target for exploitation
o ldentifying the fundamental problem with the feature
o Finding the right set of primitives

m Binary control over HKCU via ntuser.man

m A system service that performs "abusable" operations on HKCU

Conclusion

Takeaways

e The registry is a fascinating research target

e If you're a researcher: persistent analysis pays off

o Fuzzing is often only scratching the surface

o For some targets, the really good bugs come from a deep understanding of software
e If you're a vendor: some features shouldn't live forever

o Legacy code is a security hazard and should be periodically reevaluated

o Attack surface reduction and well-placed mitigations have an outsized impact on security

