Skip to content

Windows Kernel Local Denial-of-Service #3: nt!NtDuplicateToken (Windows 7-8)

This is the third post in a series about unpatched local Windows Kernel Denial-of-Service bugs. The list of previous posts published so far is as follows:

As opposed to the two issues discussed before, today’s bug is not in the graphical subsystem (win32k.sys), but in the core kernel module: ntoskrnl.exe, and more specifically in the handler of the nt!NtDuplicateToken system call (under the same name). According to MSDN, the definition of the syscall is as follows:

The vulnerability in question is caused by an unprotected access to the user-controlled pointer passed through the ObjectAttributes parameter. In fact, the argument is referenced several times in the system call handler; first, it is passed down to the nt!SeCaptureSecurityQos routine, and later to nt!SepDuplicateToken. In both those cases, reading from the memory area is guarded by the necessary try/except blocks. However, there is also a third read performed directly in the top-level syscall handler:

Continue reading ›

Windows Kernel Local Denial-of-Service #2: win32k!NtDCompositionBeginFrame (Windows 8-10)

Another week, another way to locally crash the Windows kernel with an unhandled exception in ring-0 code (if you haven’t yet, see last week’s DoS in win32k!NtUserThunkedMenuItemInfo). Today, the bug is in the win32k!NtDCompositionBeginFrame system call handler, whose beginning can be translated into the following C-like pseudo-code:

  DirectComposition::CConnection *Connection;

  if (lpInput != NULL) {
    try {
      ProbeForRead(lpInput, sizeof(INPUT_STRUCTURE), 1);
      RtlCopyMemory(&Input, lpInput, sizeof(INPUT_STRUCTURE));
      st = GetExceptionCode();
  } else {

  if (NT_SUCCESS(st)) {
    st = DirectComposition::CConnection::ReferenceHandle(hDirComp, &Connection);
    if (NT_SUCCESS(st)) {
      if (Microsoft_Windows_Win32kEnableBits & 1) {
        Template_xq(&DCompBeginFrameEvent, hDirComp, lpInput->SomeField);


Since the i/o structure names and definitions are not known to me, I just generically called them INPUT_STRUCTURE and OUTPUT_STRUCTURE; their details are non-essential to understand the bug. Here, we can see that the 2nd argument (lpInput) is accessed twice: once in line 9, with a proper sanitization with an inlined ProbeForRead call and a try/except block, but then also in line 23, where a field at offset 0x10 (SomeField in the above listing) is read from the user pointer while exception handling is disabled. The Template_xq function is just a thin wrapper around EtwWrite, which is used for logging kernel-mode events. This is the bug we want to exploit.

In order to reach the vulnerable code, we have to meet a few conditions:

  1. Make sure that the initial copy from the pointer in line 9 succeeds, i.e. the address is valid and points to readable memory. This can be satisfied by running a race condition attack, where one thread continuously flips access rights for the memory page, while another one keeps invoking the affected system call in a loop.
  2. Have the DirectComposition::CConnection::ReferenceHandle function succeed by passing in a valid handle, which can be obtained by invoking the win32k!NtDCompositionCreateConnection system call in advance.
  3. Have the 0x1 flag set in the global Microsoft_Windows_Win32kEnableBits variable.

Continue reading ›

Windows Kernel Local Denial-of-Service #1: win32k!NtUserThunkedMenuItemInfo (Windows 7-10)

Back in 2013, Gynvael and I published the results of our research into discovering so-called double fetch vulnerabilities in operating system kernels, by running them in full software emulation mode inside of an IA-32 emulator called Bochs. The purpose of the emulation (and our custom embedded instrumentation) was to capture detailed information about accesses to user-mode memory originating from the kernel, so that we could later run analysis tools to discover multiple references to single memory addresses within the scope of one system call, and produce meaningful reports. The project was called Bochspwn [1][2][3] (or kfetch-toolkit on Github) and was largely successful, leading to the discovery of several dozen serious vulnerabilities in the Windows kernel. We believe it also played a significant role in popularizing the double-fetch vulnerability class and the concept of using system-wide instrumentation for security, as several other fruitful projects ensued as a result, probably most notable of which is Xenpwn.

After all this time, I decided to get back on the subject of full system instrumentation and analyzing various execution traces in search of indicators of potential vulnerabilities. Specifically, one of my goals was to develop more patterns (based on memory accesses or other events) which could signal problems in kernel-mode code other than just double fetches. One intuitive example of such pattern is the lack of exception handling being set up at the time of accessing ring-3 memory area. As the documentation of the Windows ProbeForRead function states:

Drivers must call ProbeForRead inside a try/except block. If the routine raises an exception, the driver should complete the IRP with the appropriate error. Note that subsequent accesses by the driver to the user-mode buffer must also be encapsulated within a try/except block: a malicious application could have another thread deleting, substituting, or changing the protection of user address ranges at any time (even after or during a call to ProbeForRead or ProbeForWrite).

There’s also an example on the Handling Exceptions MSDN page:

try {
    ProbeForWrite(Buffer, BufferSize, BufferAlignment);
    /* Note that any access (not just the probe, which must come first,
     * by the way) to Buffer must also be within a try-except.
    /* Error handling code */

What happens if a ProbeFor* call or user memory access takes place outside of a try/except block? Typically nothing, but an authenticated, local attacker could exploit such a bug to cause an unhandled kernel exception (by passing in an invalid pointer or invalidating it during syscall runtime), and consequently crash the entire operating system with a Blue Screen of Death.

From a technical standpoint, it is not difficult to detect user-mode accesses with no exception handlers set up on 32-bit platforms. In Windows x86, the handler records are chained together in a SEH chain (starting at the well known fs:[0] address), where each handler is described by the following structure:

 PVOID ExceptionHandler;
 DWORD TryLevel;

Continue reading ›

Slides about my Windows Metafile research (Ruxcon, PacSec) and fuzzing (Black Hat EU) now public

During the past few weeks, I travelled around the world to give talks at several great security conferences, such as Ruxcon (Melbourne, Australia), PacSec (Tokyo, Japan), Black Hat Europe (London, UK) and finally Security PWNing Conference (Warsaw, Poland). At a majority of the events, I presented the results of my Windows Metafile security research, which took place earlier this year and yielded vulnerabilities in GDI (exploitable e.g. in Internet Explorer), GDI+ (e.g. Microsoft Office), ATMFD.DLL (Windows local privilege escalation) and the Virtual Printers mechanism in VMware Workstation. As part of the talks, I explained what GDI and metafiles really are, the process I followed while hunting for and identifying the vulnerabilities, and the exploitation paths for some of them. Finally, I discussed my approach to fuzzing a user-mode Windows DLL module on Linux machines (cross-platform), on the example of a 3rd party JPEG2000 decoder used in VMware products. Since my allocated time slots at both Ruxcon and PacSec were too short to cover the entirety of the material, I talked about the ATMFD.DLL vulnerabilities exclusively at Ruxcon, and about GDI+ only at PacSec. A complete list of the EMF bugs that were mentioned in the presentations can be found in the Google Project Zero tracker.

The second talk (presented at BH) focused purely on fuzzing and the various thoughts, techniques and results I arrived at after actively using this approach to uncover software security flaws for more than 5 years, both as part of and outside of work. The topics included gathering initial corpora of input files, extracting code coverage information from running programs, using this information to “distill” and manage live corpora (using a parallelized algorithm), interacting with our target application on various levels, and effectively mutating the input data to accomplish the best results. The presentation was then concluded with a brief analysis of my recent Windows kernel font fuzzing initiative, which has resulted in the discovery of 18 issues so far.

In this post, I would like to publicly announce both slide decks used in the above talks. While some of the conferences have already made them available on their corresponding websites, the slides linked here include some further fixes and improvements, and specifically the EMF ones are all combined into a single PDF file, forming a self-contained source of information about all the discovered bugs. Enjoy, and as always, feel free to send questions, comments and suggestions.

Windows Metafiles: An Analysis of the EMF Attack Surface & Recent Vulnerabilities


Effective File Format Fuzzing – Thoughts, Techniques and Results


Windows system call tables updated, refreshed and reworked

Those of you interested in the Windows kernel-mode internals are probably familiar with the syscall tables I maintain on my blog: the 32-bit and 64-bit listings of Windows system calls with their respective IDs in all major versions of the OS, available here (and are also linked to in the left menu):

After a few years of inactivity in this area, I’ve found some time to update and thoroughly refresh the tables. The changelog is as follows:

  1. Added information from Windows Server 2003 (R2, R2 SP2), Windows Server 2008 (R2, R2 SP1), Windows Server 2012 (R2) and Windows 10 (1507, 1511, 1607).
  2. Clarified some versions of Windows, resulting in removing non-existent Windows Server 2008 SP1 (32-bit), Windows XP SP0 (64-bit), Windows Server 2003 SP1 (64-bit), Windows Server 2008 SP1 (64-bit).
  3. Removed empty columns with missing information from the win32k 32-bit table.
  4. Performed a major clean up of the lists, resolving all syscall handler collisions and renaming invalid symbols (e.g. “FsRtlSyncVolumes”) stemming from compiler optimizations to their correct form. From now on, all system calls are represented by their real names starting with “Nt”.
  5. Unified the layout of NT and win32k tables.
  6. Added more granular information to the win32k 64-bit table (accounting for all service packs and major releases).
  7. Fixed HTML syntax errors and improved JavaScript code formatting.

I hope the tables keep proving useful for Windows researchers interested in those interfaces. :-) And of course, all comments, suggestions and bug reports are highly appreciated!

Disclosing stack data (stack frames, GS cookies etc.) from the default heap on Windows

In the previous blog post, I discussed a modest technique to “fix” the default process heap in order to prevent various Windows API functions from crashing, by replacing the corresponding field in PEB (Process Environment Block) with a freshly created heap. This of course assumes that the attacker has already achieved arbitrary code execution, or is at least able to use ROP and knows the base addresses of some vital system DLLs. It is likely the last exploitation technique one would use before gaining full control over the vulnerable application or system, and was indeed used by Gynvael and me while wrapping up the exploitation of the easier challenge during this year’s DEF CON CTF qualifiers which took place in May.

However, before we could even reach that stage, I had to overcome a few other significant obstacles, the hardest of which was converting the available primitives into a hijacked control flow. Following hours of trying to reproduce the same heap layout on the organizers’ and my own platform (exploiting the bugs was in fact the easiest part), I finally managed to achieve close to arbitrary memory read and write capabilities. By that point, I knew the location of the heap, the challenge image base and NTDLL.DLL image base, where I could freely read from and write to. On the other hand, the task itself did not make it easy to get controlled EIP even with such powerful primitives, as it didn’t store plain-text function pointers, virtual objects or any data directly controlling the execution flow on either the heap or in static memory. This meant that a generic technique had to be used instead.

All of the ideas I tested throughout Day 2 of the competition fell through. The CRT-related function pointers in static memory I could potentially overwrite were encoded with the EncodePointer API. There were some vtable pointers on the heap used during program termination, but I was unable to get them positioned in a similar fashion both locally and remotely, and I strived to write an exploit that I could test in both environments (a fellow CTF player – Dougall – didn’t care and just blindly exploited the bug on the task server). I had a pretty decent idea centered around a list of destructor pointers saved in NTDLL, but in a last attempt to find a simpler and more elegant solution, I decided to check if the stack address couldn’t be somehow leaked from heap, which I could read without any limits.

In theory, storing stack addresses on the heap doesn’t make any sense. The heap is designed for long-lasting allocations that can be passed between various execution contexts within a  single process (functions, threads etc.), while stack objects are only valid for the duration of a function execution (or even shorter). Thus, we should not typically observe any stack addresses placed on the heap, or else they would indicate some very poor programming practices. However, Windows is a complex system full of unexpected quirks, so there might still be many non-obvious reasons for such behavior, and all I really needed was a single stack address at a roughly consistent position on the heap. With this assumption, I wrote the following simple program to scan through the entire default process heap in search of the desired addresses:

Continue reading ›

Windows user-mode exploitation trick – refreshing the main process heap

During the weekend of May 21-23 (directly after the CONFidence CTF that we organized with Dragon Sector), qualifications to the famous DEF CON CTF 2016 took place. We obviously participated in what is probably the most binary heavy, challenging and competitive CTF of the year, eventually ending up 9th on the final scoreboard, which was sufficient to get us qualified to the main event. :-)

While the competition featured a great number of tasks to solve, including multiple pwnables in the CGC (Cyber Grand Challenge) formula, I must admit that I spent nearly the entire CTF working on a single challenge: a vulnerable Windows x86 executable called easier, authored by Thing2. After two full days of hacking by myself, and developing a ROP chain together with Gynvael for the last few hours, we managed to get the flag just in time – roughly 25 minutes before the end of the CTF. Overall, the problem was the second with fewest successful solves (completed by a total of 5 teams – PPP, DEFKOR, 9447, Samurai and Dragon Sector), and considering that it was available since the start of the contest (contrary to secrfrevenge), it was probably the most difficult challenge of all.

The source code of the task is available on LegitBS’ github: here. If you are interested in reading a complete (but quite different than ours) solution of the 9447 team, check out the following article: Def Con Quals 2016 – Easier [Pwnable].

The CTF challenge

For some basic context, the task was a very small executable, with DEP and ASLR enabled, running on Windows Server 2012 (Amazon EC2) under AppJailLauncher. It used symmetric encryption with a static key for communication, and allowed the network client to perform 8 operations, all centered around a list of allocations on the heap. There were plenty of vulnerabilities, or at least code constructs which appeared as such, but turned out to be unusable in practice. This made me wonder if I was missing something, the author was trolling hard, or if they just didn’t sufficiently test the task. Now I know it wasn’t #1 (since other players had the same thoughts), but I still don’t know which of options #2 and #3 it is. :)

Continue reading ›

Details on a (not so recent now) stack-based buffer overflow in the Adobe CFF rasterizer in FreeType2 (CVE-2014-2240, CVE-2014-9659)

This blog has experienced a long time of inactivity, as I’ve recently used it only to publish slides from conferences I presented at, with many months-long breaks in between. I am planning to change things up and start posting again in the upcoming weeks, starting with this blog post, which I originally wrote in early 2014. I haven’t posted it back then, as the bug in the FreeType project discussed here motivated me to look at other implementations of PostScript fonts and CharStrings specifically, which eventually resulted in an extensive research, dozens of bugs fixed by Microsoft, Adobe and Oracle, five long blog posts on the Google Project Zero blog (see the “One font vulnerability to rule them all” series), two nominations, and one Pwnie award. I didn’t want to spoil too much of what I was working on, and then just forgot about the post, but now that things have settled down on the font security front and I’m reactivating the blog, it is finally ready to go. Enjoy, and keep in mind the tenses in the article are used as if it was still 2014. :-) Some new parts I’ve added while dusting off the text are written in orange.

The bug was also briefly discussed during my last year’s 44CON presentation, see here.

At Google, we perform fuzz testing of a number of software targets: web browers, plugins, document viewers, open-source programs, libraries and more. A number of instances of our fuzzing efforts and their results have been documented in the past, see e.g. the “PDF fuzzing and Adobe Reader 9.5.1 and 10.1.3 multiple critical vulnerabilities”, “PDF Fuzzing Fun Continued: Status Update” or recent “FFmpeg and a thousand fixes” blog posts. One of the targets we have spent a lot of time on is FreeType2, a popular open-source library written in C, designed for high quality font rendering. The library is used in many commonly used operating systems and applications, such as GNU/Linux (and other Unix derivatives like FreeBSD and NetBSD), iOS, Android or ChromeOS, and hence is a valuable target for attackers seeking to exploit any of the aforementioned platforms.

The Google Security Team has always recognized the necessity for secure and robust font rendering libraries, which otherwise have been subject to frequent vulnerability hunting performed by various entities. Over the last decade, many dozens of vulnerabilities have been identified, fixed and publicly disclosed in the Windows subsystems (both kernel and user-mode) responsible for handling font files, for example:

  • Font Rasterizer Local Elevation of Privilege Vulnerability (CVE-2007-1213)
  • Embedded OpenType Font Integer Overflow Vulnerability (CVE-2010-1883)
  • TrueType Font Parsing Vulnerability (CVE-2012-0159)
  • Win32k Font Parsing Vulnerability (CVE-2013-1291)
  • Uniscribe Font Parsing Engine Memory Corruption Vulnerability (CVE-2013-3181)
  • ~25 vulnerabilities reported in the Windows Kernel, DirectWrite and .NET by yours truly in 2014 and 2015 (list).

Continue reading ›

44CON slides and details about further Windows kernel font vulnerabilities are out

Since my last blog post and the REcon conference in June, I have continued working on font security, especially in the area of Windows kernel and font engines derived from the Adobe Type Manager Font Driver. More specifically, I moved from manually auditing PostScript Charstring implementations to running automated fuzz-testing of the overall font-handling code; after all, font files are so much more than just the glyph outline programs. The Windows kernel fuzzing initiative started in May this year and has already resulted in having 7 OpenType (ATMFD.DLL) and 4 TrueType (win32k.sys) security issues fixed in the operating system in the August Patch Tuesday. Details of the vulnerabilities are now publicly available in the google-project-zero bug tracker:

  1. Windows Kernel win32k.sys TTF pool-based buffer overflow in the IUP[] program instruction (CVE-2015-2455)
  2. Windows Kernel ATMFD.DLL OTF pool-based buffer overflow with malformed GPOS table (CVE-2015-2426)
  3. Windows Kernel win32k.sys TTF pool-based buffer overflow in win32k!scl_ApplyTranslation (CVE-2015-2456)
  4. Windows Kernel ATMFD.DLL OTF out-of-bounds reads from the input CharString stream (CVE-2015-2458)
  5. Windows Kernel ATMFD.DLL OTF invalid memory access due to malformed CFF table (CVE-2015-2459)
  6. Windows Kernel ATMFD.DLL OTF invalid memory access due to malformed CFF table (CVE-2015-2460)
  7. Windows Kernel ATMFD.DLL OTF write to uninitialized address due to malformed CFF table (CVE-2015-2432)
  8. Windows Kernel ATMFD.DLL OTF out-of-bounds read due to malformed Name INDEX in the CFF table (CVE-2015-2461)
  9. Windows Kernel ATMFD.DLL OTF out-of-bounds read due to malformed FDSelect offset in the CFF table (CVE-2015-2462)
  10. Windows Kernel win32k.sys TTF out-of-bounds pool memory access in win32k!fsc_RemoveDups (CVE-2015-2463)
  11. Windows Kernel win32k.sys TTF out-of-bounds pool write in win32k!fsc_BLTHoriz (CVE-2015-2464)

Interestingly enough, two of the vulnerabilities turned out to have collided with the work of other, external researchers: CVE-2015-2426 (.OTF bug) was also discovered in the leaked Hacking Team data dump and subsequently fixed by Microsoft in an out of band security bulletin on 20 July 2015 (MS15-078), while CVE-2015-2455 (.TTF bug) was found and successfully exploited by the Keen Team during the pwn2own competition this year.

Just last week I had the pleasure to attend the 44CON conference in London, and give a talk called “Reverse engineering and exploiting font rasterizers: the OpenType saga”. The presentation was divided into three chapters, discussing an interesting FreeType vulnerability in a CFF rasterizer contributed by Adobe (an arbitrary out-of-bounds stack-based write access) and how it was incorrectly patched the first time, then explaining the details of the Charstring vulnerabilities in ATMFD and its derivatives fixed in March and May, and finally outlining my recent fuzzing activity and its results. The slide deck can be found below for your amusement:

Reverse engineering and exploiting font rasterizers: the OpenType saga (PDF, 8.69MB)

Lastly, during the course of the last few weeks I have published several posts on the official Google Project Zero blog. The first four of them make a sort of a whitepaper accompanying the REcon slides, as they discuss the discovery and exploitation process of the BLEND vulnerability, providing some further context and historical background for the curious:

  1. One font vulnerability to rule them all #1: Introducing the BLEND vulnerability
  2. One font vulnerability to rule them all #2: Adobe Reader RCE exploitation
  3. One font vulnerability to rule them all #3: Windows 8.1 32-bit sandbox escape exploitation
  4. One font vulnerability to rule them all #4: Windows 8.1 64-bit sandbox escape exploitation

More recently, I have also described the exploitation of a universal OpenType memory disclosure vulnerability affecting the Windows kernel (ATMFD), DirectWrite, Adobe Reader (CoolType), WPF and Oracle Java, on the example of Internet Explorer, one of DirectWrite’s users:

  1. Enabling QR codes in Internet Explorer, or a story of a cross-platform memory disclosure

And that’s it! I hope you enjoy reading the posts as much as I enjoyed working on them, and stay tuned for more font-related disclosures soon!

Results of my recent PostScript Charstring security research unveiled

Some months ago, I started reverse engineering and investigating the security posture of the Adobe Type Manager Font Driver (ATMFD.DLL) module, which provides support for Type 1 and OpenType fonts in the Windows kernel since Windows NT 4.0, and remains there up to this day in Windows 8.1. Specifically, I focused on the handling of so-called “Charstrings”, which are essentially binary encoded PostScript programs with a dedicated set of instructions and a specific execution environment, responsible for drawing the shape of each glyph at a particular point size. It didn’t take long to notice several important points:

  • The overall code quality of the Charstring interpreter function in ATMFD.DLL was badly low, with some bugs being clearly visible in the code at first glance. This implied that (surprisingly, considering the seemingly large amount of attention received from the security community) I entered a completely unexplored territory that others haven’t delved into, or at least publicly.
  • The kernel module used the same interpreter for both Type 1 (Type 1 fonts) and Type 2 (OpenType/CFF fonts) Charstrings, and supported every single feature that has ever been part of the specification, and plenty of undocumented ones as well – bloating the size of the function to more than 20kB (!) on the x86 platform.
  • As a result of historically strong collaboration between vendors in the early days of digital font development (the 80’s and mostly 90’s), various modern font engines have a common ancestor in Adobe’s implementation of Type 1 / OpenType fonts, including:
    • Windows GDI (i.e. ATMFD.DLL in the Windows kernel),
    • Adobe Reader (i.e. the CoolType library),
    • Microsoft DirectWrite (a library used by Internet Explorer, Google Chrome, Mozilla Firefox etc.),
    • Windows Presentation Foundation.

The above observations led me to believe that the code could be affected by one or more critical vulnerabilities, and that some of those vulnerabilities could be shared across multiple widespread desktop products, additionally elevating the potential impact of any such discovery. After several weeks of reverse engineering and auditing the interpreter for vulnerabilities, I have ended up with multiple low to critical severity issues, with most of the serious ones reproducing in more than one font engine. I subsequently reported all of my discoveries to the respective vendors (Microsoft and Adobe), which fixed the bugs in security bulletins MS15-021 (March), APSB15-10 (May) and  MS15-044 (May). A quick summary of the research results is shown below, with links pointing to the corresponding google-security-research bug tracker entries, containing reports with detailed analysis of the vulnerabilities together with Proof of Concept files, as they were provided to the vendors:

Microsoft Windows (ATMFD) Adobe Reader (CoolType) DirectWrite Windows Presentation Foundation
Unlimited Charstring execution CVE-2015-0074
Out-of-bounds reads from the Charstring stream CVE-2015-0087 CVE-2015-3095
Off-by-x out-of-bounds reads/writes relative to the operand stack CVE-2015-0088
Memory disclosure via uninitialized transient array CVE-2015-0089 CVE-2015-3049 CVE-2015-1670 CVE-2015-1670
Read/write-what-where in LOAD and STORE operators CVE-2015-0090
Buffer overflow in Counter Control Hints CVE-2015-0091 CVE-2015-3050
Buffer underflow due to integer overflow in STOREWV CVE-2015-0092 CVE-2015-3051
Unlimited out-of-bounds stack manipulation via BLEND operator CVE-2015-0093 CVE-2015-3052

While many of the above issues had the potential to be usable in the context of remote code execution (Adobe Reader, Windows kernel) or elevation of privileges (Windows kernel) attacks, one particular vulnerability stood out from the others, as it provided a specially crafted font with the ability to operate on any data on the thread’s stack with all instructions available in the Type 1 / Type 2 Charstring instruction set (including arithmetic, logic, conditional, and other instructions). In other words, one could reliably generate a full ROP chain on the stack within the PostScript program, with no external interaction other than loading the font in the first place.

The extremely powerful primitive provided by the vulnerability, together with the fact that it affected all supported versions of both Adobe Reader and Microsoft Windows (32-bit) – thus making it possible to create an exploit chain leading to a full system compromise with just a single bug – makes it one of the most interesting security issues I have discovered so far. Considering that 64-bit builds of Windows were not affected by that particular bug, I also devised a x64 way to achieve reliable elevation of privileges using another Charstring vulnerability (CVE-2015-0090) found during the research, which also adheres to the “100% reliability” and “all mitigations bypassed” philosophy. Since the overall exploitation process was also quite challenging and required the use of several interesting tricks, I decided to discuss it at the REcon security conference in Montreal in a talk called “One font vulnerability to rule them all: A story of cross-software ownage, shared codebases and advanced exploitation”. As I presented the research two days ago, I am now publishing the corresponding slide deck:

One font vulnerability to rule them all: A story of cross-software ownage, shared codebases and advanced exploitation (PDF, 7.78MB)

Below you can see videos showing successful exploitation of Adobe Reader 11.0.10 using the BLEND vulnerability (CVE-2015-3052), accompanied by sandbox escapes via ATMFD.DLL in the Windows Kernel, using again the BLEND vulnerability on x86 builds (CVE-2015-0093) and a “Registry Object” vulnerability on x64 builds (CVE-2015-0090).

If you are interested in font vulnerability research, be sure to keep an eye out on this and the Google Project Zero blogs, as further technical posts and/or whitepapers regarding this effort will be published there in the near future.